กฎยกกำลัง
{{#invoke:sidebar|collapsible | class = plainlist | titlestyle = padding-bottom:0.25em; | pretitle = บทความนี้เป็นส่วนหนึ่งของ | title = แคลคูลัส | image = | listtitlestyle = text-align:center; | liststyle = border-top:1px solid #aaa;padding-top:0.15em;border-bottom:1px solid #aaa; | expanded =
| abovestyle = padding:0.15em 0.25em 0.3em;font-weight:normal; | above = ทฤษฎีบทมูลฐาน แม่แบบ:Startflatlist
แม่แบบ:Endflatlistแม่แบบ:Startflatlist
| list2name = อนุพันธ์ | list2titlestyle = display:block;margin-top:0.65em; | list2title = แคลคูลัสเชิงอนุพันธ์ | list2 =
แม่แบบ:Sidebar
| list3name = ปริพันธ์ | list3title = แคลคูลัสเชิงปริพันธ์ | list3 =
แม่แบบ:Sidebar
| list4name = อนุกรม | list4title = อนุกรม | list4 =
แม่แบบ:Sidebar
| list5name = เวกเตอร์ | list5title = แคลคูลัสเวกเตอร์ | list5 =
แม่แบบ:Sidebar
| list6name = หลายตัวแปร | list6title = แคลคูลัสหลายตัวแปร | list6 =
แม่แบบ:Sidebar
| list7name = พิเศษ | list7title = พิเศษ | list7 = แม่แบบ:Startflatlist
}}ในแคลคูลัส สูตร หรือ กฎยกกำลัง (อังกฤษ: power rule) ใช้เพื่อหาอนุพันธ์ฟังก์ชันในรูป เมื่อใดก็ตามที่ เป็นจำนวนจริง เนื่องจากการหาอนุพันธ์เป็นการดำเนินการเชิงเส้นบนปริภูมิของฟังก์ชันหาอนุพันธ์ได้ พหุนามจึงสามารถหาอนุพันธ์ได้โดยใช้กฎนี้ กฎยกกำลังรองรับอนุกรมเทย์เลอร์เนื่องจากเชื่อมโยงอนุกรมกำลังกับอนุพันธ์ของฟังก์ชัน
ประพจน์ของกฎยกกำลัง
ให้ เป็นฟังก์ชันที่สอดคล้องกับ สำหรับทุก ที่ แม่แบบ:Efn แล้ว
กฎยกกำลังของการปริพันธ์กล่าวว่า สำหรับจำนวนจริงใด ๆ กฎดังกล่าวสามารถหาได้โดยการย้อนกลับกฎยกกำลัฃสำหรับอนุพันธ์ ในสมการนี้ C เป็นค่าคงตัวใด ๆ
บทพิสูจน์
พิสูจน์โดยใช้การหาอนุพันธ์โดยปริยาย
เป็นวิธีวางนัยทั่วไปตรง ๆ ของกฎยกกำลังไปยังเลขยกกำลังตรรกยะ ใช้การหาอนุพันธ์โดยปริยาย
ให้ เมื่อ ทำให้
แล้ว
อนุพันธ์ทั้งสองข้างของสมการในส่วน
แก้หา
เนื่องาก
ใช้สมบัติของเลขยกกำลัง
ให่้ สามารถสรุปได้ว่า เมื่อ เป็นจำนวนตรรกยะ
การนำไปใช้กับพหุนาม
พหุนามอาจเป็นฟังก์ชันที่ง่ายที่สุดในการทำแคลคูลัส อนุพันธ์ และปริพันธ์เป็นไปตามกฎต่อไปนี้
ดังนั้นอนุพันธ์ของ ก็คือ และปริพันธ์ของ คือ
บทพิสูจน์
เนื่องจากการหาอนุพันธ์เป็น การแปลงเชิงเส้น จะได้
ดังนั้นจะต้องหา สำหรับ จำนวนธรรมชาติ ใดๆ ซึ่งมีการพิสูจน์โดยอุปนัย โดยใช้ กฎผลคูณ ซึ่งขึ้นอยู่กับกรณีที่ เท่านั้น
นัยทั่วไป
เป็นจริงทุกค่า k ที่ xk มีความหมาย หรือ ทุกค่า k ที่เป็นจำนวนตรรกยะที่ xk มีการนิยามไว้
นัยทั่วไปนี้ก็เป็นจริงสำหรับการหาปริพันธ์ของพหุนามเช่นเดียวกัน
ถ้ามีพหุนามที่ตัวคูณไม่ใช่จำนวนจริงหรือจำนวนเชิงซ้อน (เช่นอาจเป็น จำนวนเต็ม หรือตัวเลขมอดุโลของจำนวนเฉพาะ) ก็สามารถนิยามอนุพันธ์จากความสัมพันธ์ข้างบน
พิสูจน์โดย ทฤษฎีบททวินาม (จำนวนธรรมชาติ)
หมายเหตุ
อ้างอิง
- Larson, Ron; Hostetler, Robert P.; and Edwards, Bruce H. (2003). Calculus of a Single Variable: Early Transcendental Functions (3rd edition). Houghton Mifflin Company. ISBN 0-618-22307-X.