พหุนาม

จาก testwiki
ไปยังการนำทาง ไปยังการค้นหา

แม่แบบ:ต้องการอ้างอิง

กราฟของฟังก์ชันพหุนามดีกรีสาม

พหุนาม (แม่แบบ:Langx) ในคณิตศาสตร์ หมายถึง นิพจน์ที่สร้างจากตัวแปรอย่างน้อยหนึ่งตัวและสัมประสิทธิ์ โดยใช้การดำเนินการแค่ การบวก การลบ การคูณ และการยกกำลังโดยที่เลขชี้กำลังเป็นจำนวนเต็มที่ไม่เป็นลบเท่านั้น ตัวอย่างของพหุนามตัวแปรเดียวที่มี แม่แบบ:Math เป็นตัวแปร เช่น แม่แบบ:Math ซึ่งเป็นพหุนามกำลังสอง

พหุนามสามารถนำไปใช้ในสาขาต่าง ๆ ของคณิตศาสตร์และวิทยาศาสตร์ได้อย่างกว้างขวาง ตัวอย่างเช่น สมการพหุนาม ซึ่งสามารถนำไปใช้ในการแก้ปัญหาได้อย่างกว้างขวาง จากโจทย์ปัญหาพื้นฐาน ไปจนถึงปัญหาที่ซับซ้อนทางวิทยาศาสตร์ และยังใช้ในการนิยาม ฟังก์ชันพหุนาม ซึ่งนำไปใช้ตั้งแต่พื้นฐานของเคมีและฟิสิกส์ ไปจนถึงเศรษฐศาสตร์และสังคมศาสตร์ รวมถึงการนำไปใช้ในแคลคูลัส และการวิเคราะห์เชิงตัวเลข ซึ่งคล้ายคลึงกับฟังก์ชันต่าง ๆ ในคณิตศาสตร์ขั้นสูงนั้น พหุนามยังใช้ในการสร้างวงล้อพหุนาม และความหลากหลายทางพีชคณิต และเป็นแนวคิดสำคัญในพีชคณิต และเรขาคณิตเชิงพีชคณิตอีกด้วย

ความหมายและที่มา

สัญกรณ์และศัพท์บัญญัติ

แม่แบบ:โครงส่วน

บทนิยาม

แม่แบบ:โครงส่วนนิพจน์ที่สร้างจากตัวแปรอย่างน้อยหนึ่งตัวและสัมประสิทธิ์ โดยใช้การดำเนินการแค่ การบวก การลบ การคูณ และการยกกำลังโดยที่เลขชี้กำลังเป็นจำนวนเต็มที่ไม่เป็นลบเท่านั้น

รูปทั่วไปของพหุนามตัวแปรเดียวสามารถเขียนได้ในรูป

anxn+an1xn1+...+a2x2+a1x+a0 หรือ n=0nanxn

โดยที่ a0,...an เป็นค่าคงที่ เรียกว่าสัมประสิทธิ์ และ x เป็นตัวแปรไม่ทราบค่า

เช่น x2+4x+7 ซึ่งเป็นพหุนามกำลังสอง

ฟังก์ชันพหุนามเกิดจากการแทนค่าตัวแปรไม่ทราบค่าลงในพหุนาม

เลขคณิตของพหุนาม

ตัวอย่างเช่น นิพจน์ y(2xz34)x2+(0.9x+z)y เป็นพหุนาม (เนื่องจาก z3 เป็นการเขียนย่อจาก zzz) แต่นิพจน์ 1x2+1 ไม่ใช่พหุนาม เนื่องจากมีการหาร เช่นเดียวกับ นิพจน์ (5+y)x เนื่องจากไม่สามารถเขียนให้อยู่ในรูปของการคูณกันที่ไม่ขึ้นกับค่าของตัวแปร x ได้

นอกจากนี้ ยังมีการนิยาม พหุนาม ในรูปแบบจำกัด กล่าวคือ พหุนามคือนิพจน์ที่เป็นผลรวมของผลคูณระหว่างตัวแปรกับค่าคงที่ ยกตัวอย่างเช่น 2x2yz33.1xy+yz2 อย่างไรก็ตาม ข้อจำกัดนี้เป็นเพียงข้อจำกัดที่ผิวเผิน เนื่องจากสามารถใช้กฎการแจกแจงแปลงพหุนามภายใต้นิยามแรกให้เป็นพหุนามภายใต้นิยามที่สองได้ ในการใช้งานทั่วไปมักไม่แยกแยะความแตกต่างทั้งสอง นอกจากนี้ในบริบททั่วไปมักนิยมถือว่าโดยทั่วไปพหุนามจะอยู่ในรูปแบบจำกัดนี้ แต่เมื่อต้องการแสดงว่าอะไรเป็นพหุนาม มักใช้รูปแบบแรกเนื่องจากสะดวกมากกว่า56

ฟังก์ชันพหุนาม

ฟังก์ชันพหุนาม คือฟังก์ชันที่นิยามด้วยพหุนาม ตัวอย่างเช่น ฟังก์ชัน f นิยามด้วย f (x) = x3x เป็นฟังก์ชันพหุนาม ฟังก์ชันพหุนามเป็นฟังก์ชันเรียบประเภทหนึ่งที่สำคัญ นั่นคือ เป็นฟังก์ชันที่มีอนุพันธ์ทุก ๆ อันดับที่จำกัด

แม่แบบ:พหุนาม แม่แบบ:โครงคณิตศาสตร์