จำนวนธรรมชาติ

จาก testwiki
ไปยังการนำทาง ไปยังการค้นหา

แม่แบบ:ลิงก์ไปภาษาอื่น

เครื่องหมายตัวหนากระดานดำ ℕ มักใช้เพื่อแสดงเซตของจำนวนธรรมชาติทั้งหมด (ดูเพิ่มที่ รายการสัญลักษณ์ทางคณิตศาสตร์)
จำนวนธรรมชาติสามารถใช้สำหรับการนับ
(แอปเปิล 1 ผล 2 ผล 3 ผล ...)

ในทางคณิตศาสตร์ จำนวนธรรมชาติ อาจหมายถึง จำนวนเต็มบวก หรือ จำนวนนับ (1, 2, 3, 4, ...) หรือ จำนวนเต็มไม่เป็นลบ (0 1 2 3 4 ...) ความหมายแรกมีการใช้ในทฤษฎีจำนวน ส่วนแบบหลังได้ใช้งานใน ตรรกศาสตร์ เซตและวิทยาการคอมพิวเตอร์

จำนวนธรรมชาติ มีการใช้งานหลักอยู่สองประการ กล่าวคือสามารถใช้จำนวนธรรมชาติในการนับ เช่น มีส้มอยู่ 3 ผลบนโต๊ะ หรืออาจใช้สำหรับการจัดอันดับ เช่น เมืองนี้เป็นเมืองที่มีขนาดใหญ่เป็นอันดับที่ 3 ในประเทศ เป็นต้น

คุณสมบัติของจำนวนธรรมชาติที่เกี่ยวกับการหารลงตัว เช่นการกระจายของจำนวนเฉพาะ เป็นเนื้อหาในทฤษฎีจำนวน ปัญหาที่เกี่ยวกับการนับ เช่น ทฤษฎีแรมซี นั้นถูกศึกษาในคณิตศาสตร์เชิงการจัด

ประวัติของจำนวนธรรมชาติและจำนวนศูนย์

สันนิษฐานว่าจำนวนธรรมชาติ มีแหล่งกำเนิดอยู่ที่การนับ เริ่มด้วยเลขหนึ่ง จำนวนธรรมชาติในนามธรรมได้เกิดขึ้นครั้งแรกจากการใช้ตัวเลข เพื่อแสดงให้ค่าจำนวน จนพัฒนาขึ้นมาในการบันทึกจำนวนที่มากขึ้น ยกตัวอย่างเช่น ชาวบาบิลอนสร้างระบบหลักจำนวนขึ้นมาซึ่งจำเป็นมากในระบบเลขหนึ่งถึงสิบ ชาวอียิปต์ได้สร้างระบบจำนวนอย่างแตกต่างในภาษาเฮียโรกริฟต์ สำหรับหนึ่งถึงสิบและเลขยกกำลังตั้งแต่หลักสิบถึงหลักล้าน ตั้งแต่ที่ถ้ำหินของคาร์หนัก(เคหกรรมของชาวอียิปต์)ก่อนคริสต์ศักราช 1500 ปี จนถึงลูฟฟ์ที่ปารีส แสดงจำนวน 276 โดย 2 แทนที่หลักร้อย 7 แทนที่หลักสิบ 6 แทนที่หลักหน่วย และดังเช่นการเขียนจำนวน 4,622 ด้วย

นิยามอย่างเป็นรูปนัย

นิยามอย่างเป็นรูปนัยเชิงคณิตศาสตร์ของจำนวนธรรมชาติพัฒนาตลอดช่วงประวัติศาสตร์โดยมีอุปสรรคบางประการ สัจพจน์ของเปอาโนกำหนดเงื่อนไขที่นิยามสมบูรณ์ใด ๆ ต้องสอดคล้อง การสร้างบางประการแสดงว่าแบบจำลองทางคณิตศาสตร์เมื่อกำหนดทฤษฎีเซต ต้องมีอยู่

คุณสมบัติพีชคณิตของจำนวนธรรมชาติ

การดำเนินการบวก (+) และการคูณ (×) กับจำนวนธรรมชาติมีคุณสมบัติทางพีชคณิตหลายประการ:

สัจพจน์ของเปอาโน

สัจพจน์ของเปอาโนเป็นที่มาของทฤษฎีอย่างเป็นรูปนัยของจำนวนธรรมชาติ สัจพจน์ของเปอาโนมีดังนี้:

  • 0 เป็นจำนวนธรรมชาติ
  • ทุกจำนวนธรรมชาติ a มีตัวตามหลัง เขียนแทนด้วย S(a) จริง ๆ แล้ว S(a) คือ a+1
  • ไม่มีจำนวนธรรมชาติที่ตัวตามหลังเป็น 0
  • S เป็น ฟังก์ชันหนึ่งต่อหนึ่ง กล่าวคือจำนวนธรรมชาติที่ต่างกันมีตัวตามหลังที่ต่างกัน: ถ้า ab แล้ว S(a)S(b)
  • ถ้า 0 มีสมบัติอย่างหนึ่ง และ ตัวตามหลังของทุก ๆ จำนวนนับที่มีสมบัตินั้น ก็มีสมบัตินั้น แล้วทุกจำนวนธรรมชาติจะมีสมบัตินั้น (สัจพจน์นี้ยืนยันว่าการพิสูจน์โดยการอุปนัยเชิงคณิตศาสตร์ถูกต้อง)

หมายเหตุ 0 ในนิยามข้างต้นไม่ได้หมายถึงเลขศูนย์เสมอไป 0 หมายถึงบางจำนวนที่สอดคล้องกับสัจพจน์ของเปอาโน เมื่อพิจารณาร่วมกับ"ฟังก์ชันตัวตามหลัง"ตามเหมาะสม ทุกระบบที่สอดคล้องกับสัจพจน์เหล่านี้สมมูลกันตามรูปแบบเชิงตรรก อย่างไรก็ตาม มีแบบจำลองสัจพจน์ของเปอาโนที่นับไม่ได้ ซึ่งเรียกว่าแบบจำลองเลขคณิตแบบไม่มาตรฐาน และยืนยันโดยUpward Löwenheim-Skolem Theorem ชื่อ 0 ใช้ในที่นี้สำหรับสมาชิกตัวแรก (มีการเสนอชื่อ"สมาชิกตัวที่ศูนย์" เพื่อให้ใช้ "สมาชิกตัวแรก" เรียก 1 ใช้ "สมาชิกตัวที่สอง" เรียก 2 ฯลฯ) ซึ่งเป็นสมาชิกที่ไม่มีตัวนำหน้า เช่นจำนวนธรรมชาติที่เริ่มด้วย 1 ก็สอดคล้องสัจพจน์ ถ้าสัญลักษณ์ 0 ถือเป็นจำนวนธรรมชาติ 1 สัญลักษณ์ S(0) ถือเป็น 2 ฯลฯ ที่จริงแล้วในต้นฉบับของเปอาโน จำนวนธรรมชาติจำนวนแรกคือ 1

การสร้างบนพื้นฐานทฤษฎีเซต

การสร้างมาตรฐาน

การสร้างมาตรฐานในวิชาทฤษฎีเซต เป็นกรณีพิเศษของการสร้างเรียงลำดับแบบวอน นิวมันน์[1] กำหนดนิยามของจำนวนธรรมชาติดังนี้:

กำหนด 0 := { } เป็นเซตว่าง
และนิยาม S(a) = a ∪ {a} สำหรับทุกเซต a S(a) คือตัวตามหลัง a และเรียก S ว่า ฟังก์ชันตัวตามหลัง
โดยสัจพจน์ของอนันต์ เซตของจำนวนธรรมชาติทุกจำนวนมีอยู่ เซตนี้คืออินเตอร์เซกชันของทุกเซตที่มีสมบัติปิดภายใต้ฟังก์ชันตัวตามหลัง จึงสอดคล้องสัจพจน์ของเปอาโน
ทุกจำนวนธรรมชาติเท่ากับเซตของจำนวนธรรมชาติทั้งหมดที่น้อยกว่าจำนวนนั้นๆ นั่นคือ
  • 0 = { }
  • 1 = {0} = {{ }}
  • 2 = {0, 1} = {0, {0}} = {{ }, {{ }}}
  • 3 = {0, 1, 2} = {0, {0}, {0, {0}}} ={{ }, {{ }}, {{ }, {{ }}}}
  • n = {0, 1, 2, ..., n−2, n−1} = {0, 1, 2, ..., n−2,} ∪ {n−1} = {n−1} ∪ (n−1) = S(n−1)
ฯลฯ

อ้างอิง

แม่แบบ:รายการอ้างอิง แม่แบบ:เริ่มอ้างอิง

  • Edmund Landau, Foundations of Analysis, Chelsea Pub Co. ISBN 0-8218-2693-X.
  • Richard Dedekind, Essays on the theory of numbers, Dover, 1963, ISBN 0-486-21010-3 / Kessinger Publishing, LLC , 2007, ISBN 0-548-08985-X
  • N. L. Carothers. Real analysis. Cambridge University Press, 2000. ISBN 0-521-49756-6
  • Brian S. Thomson, Judith B. Bruckner, Andrew M. Bruckner. Elementary real analysis. ClassicalRealAnalysis.com, 2000. ISBN 0-13-019075-6
  • แม่แบบ:Mathworld

แม่แบบ:จบอ้างอิง

ดูเพิ่ม

แหล่งข้อมูลอื่น

แม่แบบ:โครงคณิตศาสตร์