มัชฌิมเรขาคณิต

จาก testwiki
ไปยังการนำทาง ไปยังการค้นหา
มัชฌิมเรขาคณิตตัวอย่าง: lg (สีแดง) เป็นมัชฌิมเรขาคณิตของ l1 กับ l2[1][2] โดยในตัวอย่างนี้ ส่วนของเส้นตรง l2(BC) ถูกกำหนดให้ตั้งฉากกับ AB (ภาพเคลื่อนไหวจะค้างไว้ 10 วินาทีก่อนเริ่มเล่นใหม่อีกครั้ง )

ในวิชาคณิตศาสตร์ มัชฌิมเรขาคณิต เป็นค่ามัชฌิมหรือค่าเฉลี่ยที่บ่งบอกถึงแนวโน้มสู่ส่วนกลางของจำนวนชุดหนึ่งด้วยผลคูณของค่าแต่ละค่า (ต่างจากมัชฌิมเลขคณิตซึ่งใช้ผลบวกของค่าแต่ละค่า) นิยามของมัชฌิมเรขาคณิตคือ[[รากที่ n|รากที่ แม่แบบ:Math]] ของผลคูณของจำนวน แม่แบบ:Mvar จำนวน กล่าวได้ว่า สำหรับชุดของจำนวน แม่แบบ:Math มัชฌิมเรขาคณิตมีนิยามเป็น

(i=1nai)1n=a1a2ann

หรือแสดงออกโดยสมมูลกันเป็นมัชฌิมเลขคณิตของแต่ละจำนวนในมาตราส่วนลอการิทึม

exp(1ni=1nlnai)

ยกตัวอย่าง มัชฌิมเรขาคณิตของจำนวนสองจำนวน อาทิ 2 กับ 8 เป็นรากที่สอง (square root) ของผลคูณของทั้งสองจำนวน นั่นคือ 28=4 ยกอีกตัวอย่างหนึ่ง มัชฌิมเรขาคณิตของจำนวนสามจำนวน 4, 1, และ 1/32 เป็นรากที่สามของผลคูณของทั้งสามจำนวน (1/8) นั่นก็คือ 1/2 กล่าวคือ 411/323=1/2 มัชฌิมเรขาคณิตใช้ได้กับจำนวนบวกเท่านั้นแม่แบบ:Efn

มัชฌิมเรขาคณิตมักถูกใช้สำหรับชุดของจำนวนซึ่งจะนำมาคูณกันหรือมีลักษณะเป็นเลขยกกำลัง เช่นตัวเลขการเติบโตต่าง ๆ อาทิจำนวนประชากรโลกหรืออัตราดอกเบี้ยของการลงทุนทางการเงินเมื่อเวลาผ่านไป นอกจากนี้ยังถูกนำมาใช้ในการวัดเปรียบเทียบสมรรถนะของคอมพิวเตอร์ โดยมีประโยชน์สำหรับการคำนวณค่ามัชฌิมของอัตราความเร็วที่เพิ่มขึ้น (speedup) เพราะค่ามัชฌิมของจำนวน 0.5x (ช้าลงครึ่งหนึ่ง) กับ 2x (เร็วขึ้นสองเท่า) จะเป็นจำนวนเท่ากับ 1 (ไม่เร็วขึ้น)

สามารถทำความเข้าใจมัชฌิมเรขาคณิตในแง่ของเรขาคณิตได้ มัชฌิมเรขาคณิตของจำนวนสองจำนวน a กับ b เป็นความยาวของด้านหนึ่งของรูปสี่เหลี่ยมจัตุรัสซึ่งมีพื้นที่เท่ากับพื้นที่ของรูปสี่เหลี่ยมมุมฉากที่มีด้านยาว a และ b มัชฌิมเรขาคณิตของจำนวนสามจำนวนก็คล้ายกัน มัชฌิมเรขาคณิตของ a, b, กับ c เป็นความยาวของสันหนึ่งของทรงลูกบาศก์ซึ่งมีปริมาตรเท่ากับปริมาตรของทรงสี่เหลี่ยมมุมฉาก (cuboid) ที่แต่ละสันยาวเท่ากับจำนวนสามจำนวนที่กำหนดมา

มัชฌิมเรขาคณิตเป็นหนึ่งในสามค่ามัชฌิมพีทาโกรัสเช่นเดียวกับมัชฌิมเลขคณิตและมัชฌิมฮาร์มอนิก (harmonic mean) สำหรับชุดข้อมูลจำนวนบวกทุกชุดซึ่งมีสองจำนวนที่มีไม่เท่ากันเป็นอย่างน้อย มัชฌิมฮาร์มอนิกจะมีค่าน้อยที่สุดเสมอ มัชฌิมเลขคณิตจะมีค่ามากที่สุดจากมัชฌิมทั้งสามชนิด และมัชฌิมเรขาคณิตจะอยู่ระหว่างทั้งสองค่า (ดูที่อสมการของมัชฌิมเลขคณิตและเรขาคณิต (Inequality of arithmetic and geometric means))

การคำนวณ

มัชฌิมเรขาคณิตของชุดข้อมูล {a1,a2,,an} มีนิยามเป็น:

(i=1nai)1n=a1a2ann.[3]

สมการนี้ใช้สัญกรณ์ π ตัวใหญ่เพื่อแสดงถึงการคูณเป็นลำดับ ทั้งสองฝั่งของสมการแสดงการคูณค่าชุดหนึ่งตามลำดับ ("n" คือจำนวนของค่าทั้งหมด) เพื่อให้ได้ผลคูณรวมของเซต จากนั้นจึงหารากที่ n ของผลคูณรวมเพื่อหาค่ามัชฌิมเรขาคณิตของชุดข้อมูล ตัวอย่างเช่น หากมีเซตของจำนวนสี่จำนวน {1,2,3,4} ผลคูณของ 1×2×3×4 เท่ากับ 24 แล้วค่ามัชฌิมเรขาคณิตจะเท่ากับรากที่สี่ของ 24 หรือประมาณ 2.213 เลขชี้กำลัง 1n ที่ฝั่งซ้ายแสดงถึงการหารากที่ n กล่าวคือ 2414=244.

การคำนวณด้วยการทำซ้ำ

มัชฌิมเรขาคณิตของชุดข้อมูลชุดหนึ่งจะน้อยกว่ามัชฌิมเลขคณิตของชุดข้อมูลนั้น ยกเว้นหากสมาชิกทุกตัวในชุดข้อมูลมีค่าเท่ากัน ในกรณีนี้ค่ามัชฌิมเรขาคณิตและเลขคณิตจะมีค่าเท่ากัน เหตุนี้ทำให้สามารถให้นิยามค่ามัชฌิมเลขคณิต-เรขาคณิต (arithmetic-geometric mean) ได้ ซึ่งเป็นส่วนร่วมกันระหว่างทั้งสองที่จะให้ค่าออกมาระหว่างทั้งสองค่านั้นเสมอ

มัชฌิมเรขาคณิตคือ มัชฌิมเลขคณิต-ฮาร์มอนิก ด้วย ในแง่ที่หากมีลำดับอยู่สองลำดับ (an และ hn) ที่มีนิยามว่า:

an+1=an+hn2,a0=x

และ

hn+1=21an+1hn,h0=y

โดยที่ an+1 คือมัชฌิมเลขคณิตและ hn+1 คือมัชฌิมฮาร์มอนิกของค่าในลำดับก่อน ๆ ของทั้งสองลำดับ แล้ว an และ hn จะลู่เข้าหาค่าของมัชฌิมเรขาคณิตของ x และ y ทั้งสองลำดับจะลู่เข้าหาลิมิตเดียวกัน และคงสภาพของมัชฌิมเรขาคณิตไว้:

aihi=ai+hiai+hihiai=ai+hi1ai+1hi=ai+1hi+1

และได้ผลลัพธ์เดียวกันเมื่อแทนที่มัชฌิมเลขคณิตกับฮาร์มอนิกด้วยมัชฌิมทั่วไป (generalized mean) สองค่าที่มีเลขชี้กำลัง p เป็นจำนวนจำกัดที่มีค่าตรงข้ามกัน เช่น 1 กับ -1

ความสัมพันธ์กับลอการิทึม

มัชฌิมเรขาคณิตสามารถถูกแสดงออกในรูปเลขชี้กำลังของมัชฌิมเลขคณิตของลอการิทึมได้[4] การคูณสามารถแสดงออกเป็นผลรวมและการยกกำลังสามารถแสดงออกเป็นการคูณได้โดยใช้เอกลักษณ์ลอการิทึมเพื่อแปลงสภาพของสูตร:

โดยที่ a1,a2,,an>0

(i=1nai)1n=exp[1ni=1nlnai];
เพราะ
(i=1nai)1n=a1a2ann=eln(a1a2an)1/n=e1n(lna1+lna2++lnan)=e1ni=1nlnaigeometric mean(a)=earithmetic mean(ln(a))

หรือสามารถใช้ฐานเป็นจำนวนจริงบวกใด ๆ ก็ตามทั้งในลอการิทึมและเลขยกกำลัง

นอกจากนั้น หากให้ ai เป็นจำนวนลบได้

(i=1nai)1n=((1)m)1nexp[1ni=1nln|ai|],

โดยที่ แม่แบบ:Math คือจำนวนของจำนวนลบ

นี่บางครั้งถูกเรียกว่า log-average (อย่าสับสนกับมัชฌิมลอการิทึม (logarithmic average)) เพราะเป็นการคำนวณหาค่ามัชฌิมเลขคณิตของค่า ai ที่ถูกแปลงเป็นรูปลอการิทึม (กล่าวคือเป็นมัชฌิมเลขคณิตในมาตราส่วนลอการิทึม) แล้วจากนั้นใช้การยกกำลังเพื่อแปลงการคำนวณกลับไปยังมาตราส่วนเดิม นั่นคือ เป็นมัชฌิมกึ่งเลขคณิต (Quasi-arithmetic mean) ที่ f(x)=logx ตัวอย่างเช่น มัชฌิมเรขาคณิตของ 2 กับ 8 สามารถคำนวณหาได้ดังนี้ โดย b เป็นฐานค่าใดก็ตามของลอการิทึม (โดยทั่วไปจะเท่ากับ 2 ค่า e หรือ 10):

b12[logb(2)+logb(8)]=4

สำหรับชุดข้อมูล a1,,an เราสามารถมองค่ามัชฌิมเรขาคณิตได้ว่าเป็นค่าที่จะให้ค่าต่ำสุดของฟังก์ชัน

f(a)=i=1n(log(ai)log(a))2=i=1n(log(ai/a))2,

โดยทั่วไป รูปลอการิทึมเป็นทางเลือกที่ได้รับความนิยมในการปฏิบัติใช้มัชฌิมเรขาคณิตในภาษาคอมพิวเตอร์ เพราะการคำนวณผลคูณของจำนวนหลายจำนวนอาจนำให้เกิดสภาวะน้อยเกินเก็บ (arithmetic underflow) หรือสภาวะมากเกินเก็บเลขคณิต (arithmetic overflow) ซึ่งมีโอกาสเกิดน้อยกว่าในกรณีของการหาผลรวมของลอการิทึมของจำนวนแต่ละจำนวน

เปรียบเทียบกับมัชฌิมเลขคณิต

การพิสูจน์โดยไม่ใช้คำพูดเชิงเรขาคณิตว่า แม่แบบ:Nowrap > แม่แบบ:Nowrap หรือแม่แบบ:Nowrap > แม่แบบ:Nowrap > แม่แบบ:Nowrap > แม่แบบ:Nowrap > แม่แบบ:Nowrap ของจำนวนบวกที่ต่างกันสองจำนวน a และ b[5]

แม่แบบ:Stack แม่แบบ:หลัก มัชฌิมเรขาคณิตของชุดข้อมูลของจำนวน (บวก) จะมีค่ามากที่สุดไม่เกินไปกว่ามัชฌิมเลขคณิตของมันเสมอ และจะเท่ากันก็ต่อเมื่อทุก ๆ จำนวนในชุดข้อมูลมีค่าเท่ากัน มิเช่นนั้นมัชฌิมเรขาคณิตจะมีค่าน้อยกว่า ตัวอย่างเช่น มัชฌิมเรขาคณิตของ 2 กับ 3 คือ 2.45 ในขณะที่มัชฌิมเลขคณิตเท่ากับ 2.5

โดยเฉพาะอย่างยิ่ง หมายความว่าเมื่อเซตของจำนวนที่ไม่เหมือนกันถูกทำให้กระจายโดยคงสภาพมัชฌิม (mean-preserving spread) กล่าวคือสมาชิกของเซต "กระจายออกจากกัน" มากขึ้นแต่ไม่ทำให้มัชฌิมเลขคณิตเปลี่ยนไป มัชฌิมเรขาคณิตจะมีค่าน้อยลง[6]

อัตราการเติบโตโดยเฉลี่ย

ในบางกรณี มัชฌิมเรขาคณิตเป็นค่าที่ใช้วัดอัตราการเติบโตโดยเฉลี่ยของปริมาณจำเพาะหนึ่งได้ดี อาทิหากคำสั่งซื้อต่อปีเพิ่มขึ้นร้อยละ 80 และร้อยละ 25 ในปีถัดไป ผลจะเท่ากับการมีอัตราการเติบโตคงที่ร้อยละ 50 เพราะมัชฌิมเรขาคณิตของ 1.80 กับ 1.25 คือ 1.50 ในการหาอัตราการเติบโตโดยเฉลี่ย ไม่จำเป็นต้องหาผลคูณของอัตราการเติบโตที่วัดได้มาในทุก ๆ ขั้น หากให้ปริมาณมาเป็นลำดับของ a0,a1,...,an โดยที่ n คือจำนวนขั้นจากเริ่มต้นจนจบ อัตราการเติบโตระหว่างการวัดแต่ละครั้ง ak และ ak+1 คือ ak+1/ak มัชฌิมเรขาคณิตของอัตราการเติบโตเหล่านี้จึงเท่ากับ:

(a1a0a2a1anan1)1n=(ana0)1n.

การประยุกต์ใช้กับค่าที่ถูกทำให้เป็นบรรทัดฐาน

สมบัติพื้นฐานของมัชฌิมเรขาคณิตซึ่งมัชฌิมชนิดอื่น ๆ ไม่มีคือ หากมีลำดับสองลำดับ X และ Y ที่ความยาวเท่ากัน

GM(XiYi)=GM(Xi)GM(Yi)

จะทำให้มัชฌิมเรขาคณิตเป็นมัชฌิมชนิดเดียวที่ถูกต้องเมื่อคำนวณหาค่าเฉลี่ยของผลลัพธ์ซึ่งถูกทำให้เป็นบรรทัดฐาน (normalized) กล่าวคือผลลัพธ์ซึ่งแสดงออกเป็นอัตราส่วนกับค่าอ้างอิง[7] กรณีเช่นนี้เกิดขึ้นเมื่อต้องการแสดงประสิทธิภาพของคอมพิวเตอร์เมื่อเทียบกับคอมพิวเตอร์ที่นำมาอ้างอิง หรือเมื่อต้องการคำนวณดัชนีค่าเฉลี่ยค่าเดียวจากแหล่งที่ไม่เป็นแบบเดียวกัน (เช่นการคาดหมายคงชีพ ระยะเวลาการศึกษา และอัตราการเสียชีวิตทารก) ในสถานการณ์เหล่านี้ การใช้มัชฌิมเลขคณิตหรือฮาร์มอนิกจะเปลี่ยนการจัดลำดับของผลลัพธ์โดยขึ้นอยู่กับค่าที่ใช้อ้างอิง ยกตัวอย่างเช่นการเปรียบเทียบเวลากระทำการของโปรแกรมคอมพิวเตอร์ต่าง ๆ ดังต่อไปนี้:

ตาราง 1

  คอมพิวเตอร์ A คอมพิวเตอร์ B คอมพิวเตอร์ C
โปรแกรม 1 1 10 20
โปรแกรม 2 1000 100 20
มัชฌิมเลขคณิต 500.5 55 20
มัชฌิมเรขาคณิต 31.622 . . . 31.622 . . . 20
มัชฌิมฮาร์มอนิก 1.998 . . . 18.182 . . . 20

ทั้งมัชฌิมเลขคณิตและเรขาคณิตเห็นพ้องกันว่าคอมพิวเตอร์ C มีความเร็วประมวลผลสูงที่สุด ทว่าเมื่อเราแสดงด้วยค่าที่ถูกทำให้เป็นบรรทัดฐานอย่างถูกต้องแล้ว แล้วใช้ค่ามัชฌิมเลขคณิต เราแสดงให้เห็นได้ว่าคอมพิวเตอร์ทั้งสองเครื่องเป็นคอมพิวเตอร์ที่เร็วที่สุด หากใช้ A เป็นบรรทัดฐานและอ้างอิงตามมัชฌิมเลขคณิต A จะเป็นคอมพิวเตอร์ที่เร็วที่สุด:

ตาราง 2

  คอมพิวเตอร์ A คอมพิวเตอร์ B คอมพิวเตอร์ C
โปรแกรม 1 1 10 20
โปรแกรม 2 1 0.1 0.02
มัชฌิมเลขคณิต 1 5.05 10.01
มัชฌิมเรขาคณิต 1 1 0.632 . . .
มัชฌิมฮาร์มอนิก 1 0.198 . . . 0.039 . . .

ในขณะที่หากใช้ B เป็นบรรทัดฐานและอ้างอิงตามมัชฌิมเลขคณิต คอมพิวเตอร์ B จะเป็นคอมพิวเตอร์ที่เร็วที่สุด แต่หากอ้างอิงตามมัชฌิมฮาร์มอนิก คอมพิวเตอร์ A จะเป็นคอมพิวเตอร์ที่เร็วที่สุด:

ตาราง 3

  คอมพิวเตอร์ A คอมพิวเตอร์ B คอมพิวเตอร์ C
โปรแกรม 1 0.1 1 2
โปรแกรม 2 10 1 0.2
มัชฌิมเลขคณิต 5.05 1 1.1
มัชฌิมเรขาคณิต 1 1 0.632
มัชฌิมฮาร์มอนิก 0.198 . . . 1 0.363 . . .

และเมื่อใช้ C เป็นบรรทัดฐานและอ้างอิงตามมัชฌิมเลขคณิต คอมพิวเตอร์ C จะเร็วที่สุด แต่เมื่ออ้างอิงตามมัชฌิมฮาร์มอนิก คอมพิวเตอร์ A จะเร็วที่สุด:

ตาราง 4

  คอมพิวเตอร์ A คอมพิวเตอร์ B คอมพิวเตอร์ C
โปรแกรม 1 0.05 0.5 1
โปรแกรม 2 50 5 1
มัชฌิมเลขคณิต 25.025 2.75 1
มัชฌิมเรขาคณิต 1.581 . . . 1.581 . . . 1
มัชฌิมฮาร์มอนิก 0.099 . . . 0.909 . . . 1

ในทุก ๆ กรณี ลำดับความเร็วที่อ้างอิงตามมัชฌิมเรขาคณิตคงลำดับเดิมเหมือนกับที่ได้จากค่าที่ยังไม่ได้ถูกทำให้เป็นบรรทัดฐาน

อย่างไรก็ตาม การให้เหตุผลแนวนี้ถูกตั้งคำถาม[8] การได้ผลลัพธ์อย่างคงเส้นคงวาไม่ได้หมายความว่าเป็นผลลัพธ์ที่ถูกต้องเสมอไป โดยทั่วไปแล้ว จะเข้มงวดกว่าหากกำหนดให้แต่ละโปรแกรมมีน้ำหนักของตัวเอง คำนวณเวลากระทำการเฉลี่ยแบบถ่วงน้ำหนัก (ด้วยมัชฌิมเลขคณิต) แล้วนำผลลัพธ์นั้นมาใช้เป็นบรรทัดฐานกับคอมพิวเตอร์เครื่องใดเครื่องหนึ่ง ทั้งสามตารางด้านบนเพียงแต่กำหนดน้ำหนักให้กับแต่ละโปรแกรมต่างกัน เป็นเหตุที่ผลลัพธ์ของมัชฌิมเลขคณิตกับฮาร์มอนิกไม่สอดคล้องกัน (ตาราง 4 ให้น้ำหนักกับทั้งสองโปรแกรมเท่ากัน ตาราง 2 ให้น้ำหนัก 1/1000 กับโปรแกรมที่สอง และตาราง 3 ให้น้ำหนัก 1/100 กับโปรแกรมที่สองและน้ำหนัก 1/10 กับโปรแกรมที่หนึ่ง) ควรหลีกเลี่ยงการใช้งานมัชฌิมเรขาคณิตในการรวบรวมตัวเลขสมรรถภาพ เพราะการคูณเวลากระทำการด้วยกันไม่มีนัยทางกายภาพใด ๆ ซึ่งต่างจากการบวกเข้าด้วยกันสำหรับมัชฌิมเลขคณิต ตัวชี้วัดซึ่งเป็นสัดส่วนผกผันกับเวลา (เช่นอัตราความเร็วที่เพิ่มขึ้นหรือคำสั่งต่อรอบ (Instructions per cycle)) ควรเฉลี่ยด้วยมัชฌิมฮาร์มอนิก

มัชฌิมเรขาคณิตและมัชฌิมเรขาคณิตถ่วงน้ำหนักสามารถหาได้จากลิมิตของมัชฌิมทั่วไปเมื่อกำหนดให้เลขชี้กำลัง p มีค่าเข้าใกล้ศูนย์

มัชฌิมเรขาคณิตของฟังก์ชันต่อเนื่อง

หาก f:[a,b](0,) เป็นฟังก์ชันค่าจริงบวกต่อเนื่อง มัชฌิมเรขาคณิตของมันในช่วงนี้คือ

GM[f]=exp(1baablnf(x)dx)

ตัวอย่างเช่น ฟังก์ชันเอกลักษณ์ f(x)=x ในช่วงหนึ่งหน่วยแสดงให้เห็นว่ามัชฌิมเรขาคณิตของจำนวนบวกระหว่าง 0 กับ 1 เท่ากับ 1e

การประยุกต์ใช้

การเติบโตตามสัดส่วน

แม่แบบ:ข้อมูลเพิ่มเติม มัชฌิมเรขาคณิตเหมาะสมต่อการอธิบายการเติบโตตามสัดส่วนมากกว่ามัชฌิมเลขคณิต ไม่ว่าจะเป็นการเติบโตแบบเลขชี้กำลัง (exponential growth) (การเติบโตตามสัดส่วนที่คงที่) หรือการเติบโตแบบแปรผัน มัชฌิมเรชาคณิตของอัตราการเติบโตเป็นที่รู้จักในสาขาบริหารธุรกิจว่าอัตราการเติบโตต่อปีแบบทบต้น (compound annual growth rate; CAGR) มัชฌิมเรขาคณิตของการเติบโตในช่วงเวลาระยะหนึ่งให้ผลลัพธ์เป็นอัตราการเติบโตแบบคงที่ซึ่งจะให้ผลลัพธ์ในตอนสุดท้ายเท่ากัน

สมมุติว่าต้นส้มออกผลส้ม 100 ลูกในปีหนึ่ง จากนั้น 180, 210 และ 300 ลูกในปีถัด ๆ ไป อัตราการเติบโตของแต่ละปีจึงเท่ากับร้อยละ 80, 16.6666 และ 42.8571 ตามลำดับ เมื่อเราคำนวณหาอัตราการเติบโตโดยเฉลี่ย (เชิงเส้น) ด้วยมัชฌิมเลขคณิตได้เท่ากับร้อยละ 46.5079 (80% + 16.6666% + 42.8571% แล้วหารด้วย 3) แต่หากเราเริ่มจากส้ม 100 ลูกและให้ออกผลเติบโตร้อยละ 46.5079 ต่อปี ผลลัพธ์จะได้ผลส้ม 314 ลูก ซึ่งไม่ใช่ 300 ค่าเฉลี่ยเชิงเส้นจึงให้ผลลัพธ์ที่เกินจริงไปจากการเติบโตต่อปี

แต่หากเราใช้มัชฌิมเรขาคณิตแทน การเติบโตร้อยละ 80 คือการคูณด้วย 1.80 เราจึงหามัชฌิมเรขาคณิตของ 1.80, 1.166666 และ 1.428571 กล่าวคือ1.80×1.166666×1.42857131.442249 ดังนั้น อัตราการเติบโต "โดยเฉลี่ย" ต่อปีจึงเท่ากับร้อยละ 44.2249 หากเราเริ่มจากส้ม 100 ลูกและให้ออกผลเติบโตร้อยละ 44.2249 ต่อปี ผลลัพธ์จะได้ผลส้ม 300 ลูก

การเงิน

มีการนำมัชฌิมเรขาคณิตมาใช้คำนวณดัชนีทางการเงินต่าง ๆ (การเฉลี่ยแต่ละองค์ประกอบของดัชนี) เช่นในอดีตดัชนีเอฟที 30 (FT 30) ใช้มัชฌิมเรขาคณิต[9] ดัชนีวัดอัตราเงินเฟ้อ RPIJ ของสหราชอาณาจักรและสหภาพยุโรปก็ใช้เช่นกัน[10]

นี่ส่งผลให้ความเคลื่อนไหวภายในดัชนีถูกแสดงออกมาในระดับที่อ่อนลงเมื่อเทียบกับการใช้มัชฌิมเลขคณิต[9]

สังคมศาสตร์

แม้จะหาการใช้มัชฌิมเรขาคณิตในการคำนวณสถิติทางสังคมได้ยากพอสมควร แต่เมื่อ ค.ศ. 2010 ดัชนีการพัฒนามนุษย์ของสหประชาชาติได้เปลี่ยนมาคำนวณด้วยวิธีนี้ โดยให้เหตุผลว่าสะท้อนภาพธรรมชาติของสถิติที่รวบรวมมาและนำมาเปรียบเทียบอันไม่สามารถหาสิ่งใดมาทดแทนได้ได้ดีกว่าเดิม:

แม่แบบ:Quote

รายได้ที่กระจายอย่างเท่าเทียมสวัสดิการเทียบเท่าของดัชนีแอตคินสัน (Atkinson Index) ที่มีตัวแปรความรังเกียจความไม่เท่าเทียม (inequality aversion) ϵ=1.0 คือมัชฌิมเรขาคณิตของรายได้ทั้งหมด ส่วนเมื่อตัวแปรนั้นมีค่าที่ไม่เท่ากับ 1 รายได้ดังกล่าวจะมีค่าเท่ากับค่านอร์ม Lp (Lp space) หารด้วยจำนวนของข้อมูล โดย p=1ϵ

เรขาคณิต

ความสูงของรูปสามเหลี่ยมมุมฉากวัดจากมุมฉากไปยังด้านตรงข้ามมุมฉากคือมัชฌิมเรขาคณิตของความยาวของทั้งสองส่วนของด้านตรงข้ามมุมฉากที่ถูกแบ่งเป็นสองส่วน ใช้ทฤษฎีบทพีทาโกรัสกับสามเหลี่ยมทั้งสามรูปของด้าน แม่แบบ:Nowrap, แม่แบบ:Nowrap และ แม่แบบ:Nowrap ได้
(p+q)2=r2+s2p2+2pq+q2=p2+h2+h2+q22pq=2h2h=pq

ในกรณีของรูปสามเหลี่ยมมุมฉาก ความสูงคือความยาวของเส้นตรงที่ลากจากมุมฉากไปตั้งฉากกับด้านตรงข้ามมุมฉาก เส้นนี้แบ่งด้านตรงข้ามมุมฉากเป็นสองส่วน และมัชฌิมเรขาคณิตของทั้งสองส่วนนี้คือความสูงของรูปสามเหลี่ยมนั้น สมบัตินี้มีชื่อว่าทฤษฎีบทมัชฌิมเรขาคณิต

ในกรณีของวงรี กึ่งแกนโทคือมัชฌิมเรขาคณิตของระยะทางที่ยาวที่สุดกับระยะทางที่สั้นที่สุดจากโฟกัสไปยังวงรี และเป็นมัชฌิมเรขาคณิตของกึ่งแกนเอกกับกึ่งเลตัสเรกตัม และกึ่งแกนเอกคือมัชฌิมเรขาคณิตของระยะทางจากจุดศูนย์กลางไปยังโฟกัสจุดใดก็ตามกับระยะทางจากจุดศูนย์กลางไปยังเส้นบังคับ (Directrix (conic section)) เส้นใดก็ตาม

หรือกล่าวได้อีกแบบว่า หากมีรูปวงกลมรัศมีเท่ากับ r เลือกจุดสองจุดซึ่งอยู่ตรงข้ามกันบนรูปวงกลม แล้วกดให้เปลี่ยนรูปกลายเป็นวงรีโดยมีกึ่งแกนเอกและกึ่งแกนโทเท่ากับ a และ b ตามลำดับ เนื่องจากพื้นที่ของวงกลมรูปเดิมกับวงรีรูปที่ได้มามีค่าเท่ากัน เรากล่าวได้ว่า

πr2=πabr2=abr=ab

รัศมีของวงกลมเดิมคือมัชฌิมเรขาคณิตของกึ่งแกนเอกกับกึ่งแกนโทของวงรีที่ได้มาจากการเปลี่ยนรูปวงกลมรูปนั้น

ระยะทางไปยังขอบฟ้าของทรงกลมมีค่าประมาณเท่ากับมัชฌิมเรขาคณิตของระยะทางไปยังจุดบนทรงกลมที่อยู่ใกล้ที่สุดกับระยะทางไปยังจุดบนทรงกลมที่ไกลที่สุด หากกำหนดให้ระยะทางไปยังจุดบนทรงกลมที่ใกล้ที่สุดมีค่าน้อย

มัชฌิมเรขาคณิตถูกนำมาใช้ในการประมาณจัตุรัสพื้นที่เท่ารูปวงกลม (squaring the circle) ของศรีนิวาสะ รามานุชัน[11] และการสร้างรูปสิบเจ็ดเหลี่ยมด้วย "mean proportional"[12]

อัตราส่วนลักษณะ

การเปรียบเทียบพื้นที่เท่าระหว่างอัตราส่วนลักษณะต่าง ๆ ที่เคินส์ พาวเวอส์ ใช้เพื่อหามาตรฐานเอสเอ็มพีทีอี 16:9[13] สีแดงคือ แม่แบบ:Colorboxแม่แบบ:NbspTV 4:3/1.33 สีส้มคือ แม่แบบ:Colorboxแม่แบบ:Nbsp1.66 สีน้ำเงินคือ แม่แบบ:Colorboxแม่แบบ:Nbsp16:9/1.7แม่แบบ:Overline สีเหลืองคือ แม่แบบ:Colorboxแม่แบบ:Nbsp1.85 สีม่วงคือ แม่แบบ:Colorboxแม่แบบ:NbspPanavision/2.2 และสีชมพูคือ แม่แบบ:Colorboxแม่แบบ:NbspCinemaScope/2.35

มัชฌิมเรขาคณิตถูกใช้ในการเลือกอัตราส่วนลักษณะประนีประนอมในภาพยนตร์และภาพเคลื่อนไหว กล่าวคือหากมีอัตราส่วนลักษณะอยู่สองแบบ มัชฌิมเรขาคณิตของทั้งสองจะเป็นอัตราส่วนลักษณะที่ประนีประนอมระหว่างทั้งสองที่ทำให้บิดเบี้ยวหรือสูญเสียภาพไปเท่า ๆ กันในแง่หนึ่ง ในเชิงรูปธรรม รูปสี่เหลี่ยมสองรูปที่มีพื้นที่เท่ากัน (ที่จุดศูนย์กลางเดียวกันและมีด้านที่ขนานกัน) แต่มีอัตราส่วนลักษณะต่างกัน มีส่วนร่วมกันเป็นรูปสี่เหลี่ยมที่มีอัตราส่วนลักษณะเป็นมัชฌิมเรขาคณิตของทั้งสอง และเปลือกนอกของมัน (รูปสี่เหลี่ยมขนาดเล็กที่สุดที่ครอบรูปสี่เหลี่ยมทั้งสองรูป) ก็มีอัตราส่วนลักษณะเป็นมัชฌิมเรขาคณิตของทั้งสองเช่นกัน

ในการหาสมดุลระหว่างอัตราส่วนลักษณะ CinemaScopeแม่แบบ:Nbsp2.35 กับ 4:3 มัชฌิมเรขาคณิตเท่ากับ 2.35×431.7701 เอสเอ็มพีทีอี (SMPTE) จึงเลือกอัตราส่วนลักษณะ 16:9=1.777 เคินส์ พาวเวอส์ (Kerns Powers) ค้นพบอัตราส่วนลักษณะนี้ผ่านวิธีการเชิงประจักษ์ เขาตัดรูปสี่เหลี่ยมออกเป็นพื้นที่เท่ากันและตัดออกให้มีอัตราส่วนลักษณะเท่ากับอัตราส่วนที่มีใช้อยู่แพร่หลายในขณะนั้น เมื่อนำมาซ้อนกันโดยวางจุดศูนย์กลางให้ตรงกัน เขาพบว่ารูปสี่เหลี่ยมอัตราส่วนลักษณะทั้งหมดใส่พอดีกับรูปสี่เหลี่ยมภายนอกที่มีอัตราส่วนลักษณะเท่ากับ 1.77:1 และทั้งหมดก็คลุมพื้นที่รูปสี่เหลี่ยมภายในร่วมกันที่มีอัตราส่วนลักษณะเท่ากับ 1.77:1 เช่นกัน[13]

เมื่อใช้เทคนิคหามัชฌิมเรขาคณิตแบบเดียวกันกับอัตราส่วนลักษณะ 16:9 และ 4:3 จะได้ผลลัพธ์โดยประมาณเท่ากับอัตราส่วนลักษณะ 14:9 (1.555...) ซึ่งในแบบเดียวกัน เป็นการประนีประนอมระหว่างอัตราส่วนทั้งสอง[14]

ขนาดกระดาษ

มัชฌิมเรขาคณิตถูกใช้คำนวณขนาดกระดาษซีรีส์ B และ C กระดาษขนาด Bn มีพื้นที่เท่ากับมัชฌิมเรขาคณิตของพื้นที่ของกระดาษขนาด An กับ An1 ตัวอย่างเช่น พื้นที่ของกระดาษ B1 เท่ากับ 22m2 เพราะเป็นมัชฌิมเรขาคณิตของพื้นที่ของกระดาษ A0 (1m2) กับของกระดาษ A1 (12m2)

1m212m2=12m4=12m2=22m2

ขนาดกระดาษซีรีส์ C ใช้หลักการเดียวกัน โดยมีพื้นที่เท่ากับมัชฌิมเรขาคณิตของขนาดกระดาษซีรีส์ A และ B ตัวอย่างเช่น กระดาษ C4 มีพื้นที่เท่ากับมัชฌิมเรขาคณิตของพื้นที่ของกระดาษ A4 และ B4

ข้อได้เปรียบของความสัมพันธ์แบบนี้คือกระดาษ A4 สามารถใส่ลงในซองกระดาษขนาด C4 ได้พอดี และกระดาษทั้งสองใส่ลงในซองกระดาษขนาด B4 ได้พอดี

อื่น ๆ

ดูเพิ่ม

แม่แบบ:สถานีย่อย แม่แบบ:Div col

แม่แบบ:Div col end

หมายเหตุ

แม่แบบ:รายการหมายเหตุ

อ้างอิง

แม่แบบ:รายการอ้างอิง

แหล่งข้อมูลอื่น