การหาค่าเหมาะที่สุด

จาก testwiki
ไปยังการนำทาง ไปยังการค้นหา

ในทางคณิตศาสตร์ การหาค่าเหมาะที่สุด[1] (optimization) หมายถึงการหาตัวเลือกที่ดีที่สุดตามเงื่อนไขทางคณิตศาสตร์ที่กำหนดแม่แบบ:R โดยเลือกตัวแปรจากเซตที่กำหนดให้ฟังก์ชันที่เป็นวัตถุประสงค์มีค่าเหมาะที่สุด เช่น ค่าต่ำสุดหรือค่าสูงสุด วิธีการหาค่าเหมาะที่สุดได้รับการประยุกต์ใช้ในสาขาต่าง ๆ เช่น ฟิสิกส์ วิศวกรรมศาสตร์ เศรษฐศาสตร์ เป็นต้น

นิยามปัญหา

ปัญหาการหาค่าเหมาะที่สุดในบริบทของจำนวนจริง หมายถึงการเลือกตัวแปร x จากเซตตัวเลือกที่เป็นไปได้ เพื่อให้ได้ค่าของฟังก์ชัน f(x) เป็นค่าสูงที่สุดหรือค่าต่ำที่สุด

ให้ x=(x1,,xn) เป็นเวกเตอร์จำนวนจริงในปริภูมิจำนวนจริง n มิติ (n) และให้ฟังก์ชัน f และ g1,g2,,gm เป็นฟังก์ชันจาก n ไปยังจำนวนจริง ปัญหาการหาค่าเหมาะที่สุด (ในบริบทของฟังก์ชันจำนวนจริง) สามารถเขียนออกมาในรูปแบบทั่วไปได้ว่าแม่แบบ:R เลือกเวกเตอร์ x ที่ทำให้ f(x) มีค่าน้อยที่สุด minxf(x) ภายใต้เงื่อนไขว่า สำหรับ i=1,2,,m: gi(x)0 ฟังก์ชัน f เรียกว่าเป็นฟังก์ชันวัตถุประสงค์ ในขณะที่ฟังก์ชัน g1,g2,,gm เรียกว่าฟังก์ชันเงื่อนไขบังคับ ค่า f(x*) เป็นค่าเหมาะที่สุด (หรือค่าต่ำสุด) ถ้า x* เป็นไปตามเงื่อนไขบังคับทุกข้อ และ f(x*) มีค่าน้อยที่สุดในบรรดาเวกเตอร์ที่เป็นไปตามเงื่อนไขบังคับ กล่าวคือ f(x*)f(z) สำหรับเวกเตอร์ zn ใดๆ ที่เป็นไปตามเงื่อนไขบังคับ g1(z)0,g2(z)0,,gm(z)0 เวกเตอร์ x* เรียกว่าคำตอบหรืออาร์กิวเมนต์ของค่าเหมาะที่สุด

ดูเพิ่ม

อ้างอิง

แม่แบบ:รายการอ้างอิง แม่แบบ:โครงคณิตศาสตร์