การแยกตัวประกอบ

จาก testwiki
ไปยังการนำทาง ไปยังการค้นหา

แม่แบบ:ต้องการอ้างอิง

พหุนาม x2 + cx + d เมื่อ a + b = c และ ab = d สามารถแยกตัวประกอบให้เป็น (x + a)(x + b)

การแยกตัวประกอบ (แม่แบบ:Langx) ในทางคณิตศาสตร์ หมายถึงการแบ่งย่อยวัตถุทางคณิตศาสตร์ (เช่น จำนวน พหุนาม หรือเมทริกซ์) ให้อยู่ในรูปผลคูณของวัตถุอื่น ซึ่งเมื่อคูณตัวประกอบเหล่านั้นเข้าด้วยกันจะได้ผลลัพธ์ดังเดิม ตัวอย่างเช่น จำนวน 15 สามารถแยกตัวประกอบให้เป็นจำนวนเฉพาะได้เป็น 3 × 5 และพหุนาม x24 สามารถแยกได้เป็น (x2)(x+2) เป็นต้นจำนวนเชิงซ้อน (อังกฤษ : complex number) ในทางคณิตศาสตร์ คือ เซตที่ต่อเติมจากเซตของจำนวนจริงโดยเพิ่มจำนวน i ซึ่งทำให้สมการ i2+1=0 เป็นจริง และหลังจากนั้นเพิ่มสมาชิกตัวอื่น ๆ เข้าไปจนกระทั่งเซตที่ได้ใหม่มีสมบัติการปิดภายใต้การบวกและการคูณ จำนวนเชิงซ้อน z ทุกตัวสามารถเขียนอยู่ในรูป x+iy โดยที่ x และ y เป็นจำนวนจริง โดยเราเรียก x และ y ว่าส่วนจริง (real part) และส่วนจินตภาพ (imaginary part) ของ z ตามลำดับ

จุดมุ่งหมายของการแยกตัวประกอบคือการลดทอนวัตถุให้เล็กลง อาทิ จากจำนวนไปเป็นจำนวนเฉพาะ จากพหุนามไปเป็นพหุนามลดทอนไม่ได้ (irreducible polynomial) การแยกตัวประกอบจำนวนเต็มเป็นส่วนหนึ่งของทฤษฎีบทมูลฐานของเลขคณิต ส่วนการแยกตัวประกอบพหุนามเป็นส่วนหนึ่งของทฤษฎีบทมูลฐานของพีชคณิต สำหรับพหุนาม สิ่งที่ตรงข้ามกับการแยกตัวประกอบคือการกระจายพหุนาม (polynomial expansion) ซึ่งเป็นการคูณตัวประกอบทุกตัวเข้าด้วยกันเป็นพหุนามใหม่

การแยกตัวประกอบจำนวนเต็มสำหรับจำนวนขนาดใหญ่อาจกลายเป็นข้อปัญหาที่ยุ่งยาก ซึ่งไม่มีวิธีใดที่สามารถแยกตัวประกอบจำนวนขนาดใหญ่ได้อย่างรวดเร็ว แต่ความยุ่งยากนี้เป็นประโยชน์ต่อการรักษาความปลอดภัยในขั้นตอนวิธีของการเข้ารหัสลับแบบกุญแจอสมมาตร อย่างเช่น RSA

สำหรับการแยกตัวประกอบของเมทริกซ์เรียกว่า การแยกเมทริกซ์ (matrix decomposition) ซึ่งมีวิธีการที่เหมาะสมแตกต่างกันไปสำหรับเมทริกซ์นั้นๆ เช่น การแยกแบบคิวอาร์ (QR decomposition) เป็นต้น วิธีหลักอย่างหนึ่งที่นิยมคือการทำให้เป็นผลคูณของ เมทริกซ์เชิงตั้งฉาก (orthogonal matrix) หรือเมทริกซ์ยูนิแทรี (unitary matrix) กับเมทริกซ์แบบสามเหลี่ยม (triangular matrix)

อีกตัวอย่างหนึ่งของการแยกตัวประกอบคือการแยกฟังก์ชันให้กลายเป็นการประกอบฟังก์ชัน (function composition) กับฟังก์ชันอื่นโดยมีเงื่อนไขที่เจาะจง ตัวอย่างเงื่อนไขเช่น ฟังก์ชันทุกฟังก์ชันสามารถเขียนให้อยู่ในรูปของการประกอบของฟังก์ชันทั่วถึง (surjective function) กับฟังก์ชันหนึ่งต่อหนึ่ง (injective function) เป็นต้น

จำนวนเต็ม

แม่แบบ:บทความหลัก

พหุนาม

การแยกตัวประกอบพหุนามกำลังสอง

พหุนามกำลังสองใด ๆ บนจำนวนเชิงซ้อน (คือพหุนามที่อยู่ในรูป ax2+bx+c เมื่อ a,b,c) สามารถแยกตัวประกอบให้เป็นนิพจน์ที่อยู่ในรูป a(xα)(xβ) เมื่อ α และ β คือรากของพหุนาม ซึ่งคำนวณได้จากสูตรกำลังสองดังนี้

ax2+bx+c=a(xα)(xβ)=a(x(b+b24ac2a))(x(bb24ac2a))

พหุนามที่สามารถแยกได้บนจำนวนเต็ม

บางครั้งพหุนามกำลังสองสามารถแยกออกได้เป็นทวินาม (binomial) สองตัวด้วยสัมประสิทธิ์ที่เป็นจำนวนเต็ม โดยไม่จำเป็นต้องใช้สูตรกำลังสองในการคำนวณ ซึ่งมีประโยชน์สำหรับการหารากของสมการกำลังสอง โดยที่พหุนาม

ax2+bx+c

สามารถแยกได้เป็น

(mx+p)(nx+q)

เมื่อ

mn=a
pq=c
pn+mq=b

จากนั้นจึงให้ทวินามแต่ละตัวเท่ากับศูนย์ แล้วคำนวณหาค่าของ x เพื่อหารากของสมการกำลังสอง

ไตรนามกำลังสองสมบูรณ์

แผนภาพที่พิสูจน์ว่า
(a+b) ² = a²+2ab+b²

พหุนามกำลังสองบางชนิดสามารถแยกตัวประกอบออกได้เป็นทวินามที่เหมือนกัน พหุนามนั้นเรียกว่า ไตรนามกำลังสองสมบูรณ์ หรือเพียงแค่ กำลังสองสมบูรณ์ ซึ่งพหุนามดังกล่าวสามารถแยกได้ดังนี้

(a+b)2=(a+b)(a+b)=a2+2ab+b2
(ab)2=(ab)(ab)=a22ab+b2

ผลบวกและผลต่างกำลังสอง

แม่แบบ:บทความหลัก การแยกตัวประกอบทางพีชคณิตอีกอย่างหนึ่งเรียกว่า ผลต่างกำลังสอง มีสูตรดังนี้

a2b2=(ab)(a+b)

ซึ่งเป็นจริงสำหรับทั้งสองพจน์ ไม่ว่าจำนวนเหล่านั้นจะเป็นกำลังสองสมบูรณ์หรือไม่ ถ้าพจน์ทั้งสองลบกัน ก็ให้แทนด้วยสูตรดังกล่าวได้ทันที แต่ถ้าพจน์ทั้งสองบวกกัน ทวินามที่ได้จากการแยกตัวประกอบจะต้องมีจำนวนจินตภาพเข้ามาเกี่ยวข้อง ซึ่งแสดงได้ดังนี้

a2+b2=(a+bi)(abi)

ตัวอย่างเช่น 4x2+49 สามารถแยกได้เป็น (2x+7i)(2x7i) เป็นต้น

การแยกตัวประกอบพหุนามอื่น ๆ

ผลบวกและผลต่างกำลังสาม

สูตรสำหรับการแยกตัวประกอบของผลบวกและผลต่างกำลังสามเป็นดังนี้ ผลบวกและผลต่างสามารถแยกตัวประกอบเป็น

a3+b3=(a+b)(a2ab+b2)
a3b3=(ab)(a2+ab+b2)

เช่น x3 − 103 (or x3 − 1000) สามารถแยกตัวประกอบเป็น (x − 10)(x2 + 10x + 100) แม่แบบ:โครงคณิตศาสตร์