กฎของชเต็ฟฟัน–บ็อลทซ์มัน

จาก testwiki
ไปยังการนำทาง ไปยังการค้นหา

แม่แบบ:See also

มีข้อผิดพลาดในการสร้างรูปย่อ:
กราฟของฟังก์ชันซึ่งแสดงสัดส่วนระหว่างพลังงานทั้งหมดที่ถูกส่งออกมาจากวัตถุดำ j กับอุณหภูมิทางอุณหพลศาสตร์ T และเส้นสีฟ้าแสดงถึงพลังงานทั้งหมดตามการประมาณของวีน (Wien approximation) jW=j/ζ(4)0.924σT4

กฎของชเต็ฟฟัน–บ็อลทซ์มัน (แม่แบบ:Langx) ใช้อุณหภูมิเพื่ออธิบายถึงพลังงานที่วัตถุดำแผ่รังสีออกมา โดยกล่าวว่าพลังงานทั้งหมดซึ่งวัตถุดำแผ่ออกมาต่อหน่วยพื้นที่ผิวที่ความยาวคลื่นทุกค่าต่อหน่วยเวลา j (หรือเรียกว่าความเปล่งรังสีของวัตถุดำ) ซึ่งแปรผันตรงกับอุณหภูมิทางอุณหพลศาสตร์ ของวัตถุดำ T กำลังสี่:

j=σT4.

ในที่นี้ σ เป็นค่าคงตัว เรียกว่า ค่าคงตัวของชเต็ฟฟัน–บ็อลทซ์มัน (Stefan–Boltzmann constant) ซึ่งหามาได้จากค่าคงตัวทางฟิสิกส์ค่าอื่นที่รู้อยู่แล้ว ค่าคงตัวนี้มีค่าเท่ากับ

σ=2π5k415c2h3=5.670373×108Wm2K4,

เมื่อ k เป็นค่าคงตัวบ็อลทซ์มัน h เป็นค่าคงตัวของพลังค์ และ c เป็นอัตราเร็วของแสงในสุญญากาศ ความแรงรังสี (radiance) จากองศาการมองที่กำหนด (วัตต์ต่อตารางเมตรต่อสเตอเรเดียน) ถูกกำหนดไว้เป็น

L=jπ=σπT4.

วัตถุที่ไม่ดูดกลืนรังสีตกกระทบทั้งหมด (บางครั้งถูกเรียกว่าวัตถุเทา) ปล่อยพลังงานรวมทั้งหมดน้อยกว่าวัตถุดำและมีคุณลักษณะสภาพเปล่งรังสี (Emissivity) ε<1:

j=εσT4.

การเปล่งรังสี j มีมิติ (dimensional analysis) เป็นฟลักซ์พลังงาน (energy flux) (พลังงานต่อหน่วยเวลาต่อหน่วยพื้นที่) และหน่วย SI ของมันคือจูลต่อวินาทีต่อตารางเมตรหรือวัตต์ต่อตารางเมตร หน่วย SI ของอุณหภูมิสัมบูรณ์ T คือเคลวิน สภาพเปล่งรังสีของวัตถุเทาคือ ε และหากเป็นวัตถุดำที่สมบูรณ์ ε=1 ส่วนในกรณีทั่วไป (และสมจริงกว่า) นั้นสภาพเปล่งรังสีขึ้นอยู่กับความยาวคลื่น

ε=ε(λ)

เราสามารถหากำลังทั้งหมดที่ถูกแผ่รังสีออกมาจากวัตถุได้ด้วยการคูณด้วยพื้นที่ผิว A:

P=Aj=AεσT4.

อนุภาคระดับความยาวคลื่นและเล็กกว่าความยาวคลื่น[1] อภิวัสดุ (metamaterial)[2] และโครงสร้างนาโนอื่น ๆ ไม่อยู่ภายใต้ข้อจำกัดของทัศนศาสตร์เชิงเรขาคณิตหรือรังสี และอาจถูกออกแบบมาให้เกินกว่ากฎของชเต็ฟฟัน-บ็อลทซ์มัน

ประวัติ

ในปี ค.ศ. 1864 จอห์น ทินดัลล์ (John Tyndall) นำแสนอการวัดค่าการเปล่งรังสีอินฟราเรดของเส้นใยทองคำขาวและสีของเส้นใยที่สอดคล้องกัน[3]แม่แบบ:Sfn

สัดส่วนกำลังสี่ของอุณหภูมิสัมบูรณ์นั้นถูกนิรนัยโดยโยเซ็ฟ ชเต็ฟฟัน (ค.ศ. 1835–1893) ในปี ค.ศ. 1879 บนพื้นฐานของการวัดผลการทดลองของทินดัลล์ในบทความ Über die Beziehung zwischen der Wärmestrahlung und der Temperatur (เกี่ยวกับความสัมพันธ์ระหว่างการแผ่รังสีความร้อนกับอุณหภูมิ) ใน Bulletins from the sessions ของ Vienna Academy of Sciences.[4][5]

ลูทวิช บ็อลทซ์มัน (ค.ศ. 1844–1906) ได้นำเสนอการอนุพัทธ์กฎนี้ผ่านการพิจารณาเชิงทฤษฎีในปี ค.ศ. 1884 โดยนำงานของอาดอลโฟ บาร์โตลี (Adolfo Bartoli) มาใช้[6] ในปี ค.ศ. 1876 บาร์โทลิได้อนุพัทธ์การมีอยู่ของแรงดันรังสี (radiation pressure) จากหลักอุณหพลศาสตร์ และต่อมาบ็อลทซ์มันได้พิจารณาถึงเครื่องจักรความร้อนที่ใช้รังสีแม่เหล็กไฟฟ้าเป็นสิ่งที่ทำงานแทนแก็สอุดมคติ

กฎนี้ถูกยืนยันผ่านการทดลองแทบจะทันที ไฮน์ริช ฟรีดริช เวเบอร์ ได้ชี้ให้เห็นการเบี่ยงเบนในอุณหภูมิที่สูงกว่าแต่ได้มีการยืนยันถึงความแม่นยำเกือบสมบูรณ์ภายในความไม่แน่นอนของการวัดในอุณหภูมิสูงถึง 1535 เคลวินในปี ค.ศ. 1897[7] กฎนี้รวมไปถึงการคาดการณ์เชิงทฤษฎีของค่าคงตัวของชเต็ฟฟัน–บ็อลทซ์มันว่าเป็นฟังก์ชันของอัตราเร็วของแสง ค่าคงตัวบ็อลทซ์มัน และค่าคงตัวของพลังค์เป็นผลพวงโดยตรงของกฎของพลังค์อย่างที่ถูกกำหนดไว้ในปี ค.ศ. 1900

ตามการนิยามหน่วยฐานเอสไอใหม่ พ.ศ. 2562 ซึ่งแก้ไขค่าของค่าคงตัวบ็อลทซ์มัน k ค่าคงตัวของพลังค์ h และอัตราเร็วของแสง c ค่าคงตัวของชเต็ฟฟัน–บ็อลทซ์มันมีค่าอย่างแม่นยำเท่ากับ

σ=5454781984210512994952000000π529438455734650141042413712126365436049Wm2K4.

ตัวอย่าง

อุณหภูมิของดวงอาทิตย์

ชเต็ฟฟันยังได้คำนวณอุณหภูมิบนพื้นผิวของดวงอาทิตย์ด้วยกฎของเขา[4]แม่แบบ:Rp. เขาอนุมานจากข้อมูลของ ฌัก-หลุยส์ ซอแร (Jacques-Louis Soret; 1827–1890)[8] ได้ว่าความหนาแน่นของฟลักซ์พลังงานจากดวงอาทิตย์มีค่ามากกว่าความหนาแน่นของฟลักซ์พลังงานจากแผ่นโลหะบาง ๆ ชนิดหนึ่งที่ร้อนถึง 29 เท่า แผ่นบาง (lamella) รูปร่างกลมถูกวางไว้ห่างไประยะหนึ่งซึ่งทำให้มองเห็นอยู่ในมุมเดียวกับดวงอาทิตย์ โซเรต์ประมาณไว้ว่าอุณหภูมิของแผ่นบางคือประมาณ 1900 ถึง 2000°C ชเต็ฟฟันสันนิษฐานว่า ⅓ ของฟลักซ์พลังงานจากดวงอาทิตย์ถูกดูดกลืนโดยบรรยากาศของโลก เขาจึงถือว่าฟลักซ์พลังงานของดวงอาทิตย์ที่ถูกต้องมีค่ามากกว่าค่าของโซเรต์ 3/2 เท่า คือ 29 × 3/2 = 43.5 เท่า

ค่าของการดูดกลืนของบรรยากาศไม่เคยมีการวัดค่าอย่างแม่นยำจนกระทั่งปี ค.ศ. 1888 และ 1904 ค่าของอุณหภูมิที่ชเต็ฟฟันได้มาคือค่ามัธยฐานของค่าก่อน ๆ คือ 1950 °C และค่าสัมบูรณ์เท่ากับ 2200 K ในเมื่อ 2.574 = 43.5 จึงอนุมานตามกฎได้ว่าอุณหภูมิของดวงอาทิตย์มีค่ามากกว่าอุณหภูมิของแผ่นบางแผ่นนั้น 2.57 เท่า เขาจึงได้ค่าออกมาเท่ากับ 5430 °C หรือ 5700 K (ค่าที่วัดได้ปัจจุบันคือ 5778 K[9]) นี่เป็นการวัดค่าอุณหภูมิของดวงอาทิตย์ที่สมเหตุสมผลเป็นครั้งแรก แต่ก่อนนี้ค่าที่วัดได้มีค่าต่ำสุดตั้งแต่ 1800 °C จนถึงค่าสูงสุด 13,000,000 °C[10] โกลด ปูยเย (Claude Pouillet) (ค.ศ. 1790–1868) คำนวณได้ค่าต่ำสุด 1800 °C ในปี ค.ศ. 1838 โดยใช้กฎของดูลง–เปอตี (Dulong–Petit law)[11]

อุณหภูมิของดาวฤกษ์

อุณหภูมิของดาวฤกษ์ดวงอื่นนอกเหนือจากดวงอาทิตย์สามารถประมาณได้ด้วยวิธีที่คล้ายกันโดยการถือพลังงานที่เปล่งออกมาเสมือนการแผ่รังสีของวัตถุดำ[12] So:

L=4πR2σTe4

โดย L เป็นกำลังส่องสว่าง σ เป็นค่าคงตัวของชเต็ฟฟัน–บ็อลทซ์มัน R เป็นรัศมีของดาว (stellar radius) และ T เป็นอุณหภูมิยังผล เราสามารถใช้สูตรเดียวกันเพื่อคำนวณรัศมีโดยประมาณของดาวฤกษ์แถบลำดับหลัก (main sequence stars) เทียบกับของดวงอาทิตย์:

RR(TT)2LL

โดย R เป็นรัศมีดวงอาทิตย์ L เป็นความสว่างดวงอาทิตย์เป็นต้น

นักดาราศาสตร์สามารถอนุมานหารัศมีของดาวฤกษ์ได้ด้วยกฎของชเต็ฟฟัน–บ็อลทซ์มัน

กฎนี้ปรากฏในอุณหพลศาสตร์ (Black hole thermodynamics) ของหลุมดำในสิ่งที่เรียกว่าการแผ่รังสีฮอว์กิง

อุณหภูมิยังผลของโลก

ในทางคล้ายกันเราสามารถคำนวณอุณหภูมิยังผลของโลก T ด้วยการจับพลังงานที่ได้รับจากดวงอาทิตย์มาเท่ากับพลังงานที่แผ่รังสีจากโลกภายใต้การประมาณของวัตถุดำ (การผลิตพลังงานของโลกเองนั้นน้อยพอที่ไม่จำเป็นต้องสนใจ) กำลังส่องสว่างของดวงอาทิตย์ L ถูกกำหนดไว้เป็น:

L=4πR2σT4

พลังงานเคลื่อนมาที่โลกผ่านทรงกลมรัศมี a0 หรือระยะทางจากดวงอาทิตย์มาที่โลก ความรับอาบรังสี (irradiance) (พลังที่ได้รับต่อหน่วยพื้นที่) ถูกกำหนดไว้เป็น

E=L4πa02

รัศมีของโลกเท่ากับ R ดังนั้นจึงมีพื้นที่ตัดขวางเท่ากับ πR2 ฟลักซ์การแผ่รังสี (radiant flux) (นั่นคือ พลังแสงอาทิตย์) ที่โลกดูดกลืนถูกกำหนดเป็น:

Φabs=πR2×E:

เพราะกฎของชเต็ฟฟัน–บ็อลทซ์มันใช้เลขชี้กำลังที่สี่ จึงมีผลให้การแลกเปลี่ยนเสถียร ฟลักซ์ที่ถูกปล่อยจากโลกจึงมีแนวโน้มเท่ากับฟลักซ์ที่ดูดกลืน และมีสภาพใกล้เคียงกับสภาวะคงที่:

4πR2σT4=πR2×E=πR2×4πR2σT44πa02

T จึงหาได้จาก:

T4=R2T44a02T=T×R2a0=5780K×696×106m2×149.598×109m279K

โดย T เป็นอุณหภูมิของดวงอาทิตย์ R เป็นรัศมีของดวงอาทิตย์ และ a0 เป็นระยะทางระหว่างโลกกับดวงอาทิตย์ ทั้งหมดนี้ให้ค่าอุณหภูมิยังผลของโลกเท่ากับ 6 °C บนพื้นผิวของโลก เมื่อเราถือว่าโลกไม่มีชั้นบรรยากาศและสามารถดูดกลืนการเปล่งรังสีที่ตกกระทบได้ทั้งหมด

โลกมีอัตราส่วนสะท้อนเท่ากับ 0.3 นั่นหมายความว่า 30% ของรังสีจากดวงอาทิตย์ที่ชนโลกนั้นจะสะท้อนกลับไปในอวกาศ ผลของอัตราส่วนสะท้อนที่มีต่ออุณหภูมิสามารถถูกประมาณได้ว่าพลังงานที่ถูกดูดกลืนลดลงเหลือ 70% แต่โลกก็จะยังแผ่รังสีออกแบบวัตถุดำ (ตามนิยามของอุณหภูมิยังผลซึ่งเป็นสิ่งที่เรากำลังคำนวณ) การประมาณอันนี้ลดอุณหภูมิที่คำนวณลงได้ 0.71/4 เท่าเหลือ 255 K (−18 °C)[13][14]

อุณหภูมิที่คำนวณได้ด้านบนเป็นอุณหภูมิของโลกอย่างที่มองเห็นจากอวกาศ ไม่ใช่อุณหภูมิบนพื้นผิวแต่เป็นค่าเฉลี่ยของวัตถุที่เปล่งรังสีทั้งหมดตั้งแต่บนพื้นผิวจนถึงพื้นที่ระดับสูง อุณหภูมิพื้นผิวเฉลี่ยจริงของโลกคือประมาณ 288 K (15 °C) ซึ่งสูงกว่าอุณหภูมิยังผล 255 K และอุณหภูมิของวัตถุดำ 279 K เนื่องมาจากปรากฏการณ์เรือนกระจก

ด้านบนเราสมมติว่าพื้นผิวทั้งหมดของโลกมีอุณหภูมิเดียวกัน เราจึงถามได้อีกว่าอุณหภูมิของพื้นผิววัตถุดำบนโลกจะมีอุณหภูมิเท่าใดหากเราสมมติว่าผิวนั้นอยู่ในสภาวะสมดุลกับแสงอาทิตย์ที่ตกกระทบ แต่นี่ขึ้นอยู่กับองศาของแสงอาทิตย์และปริมาณบรรยากาศที่แสงส่องผ่าน เมื่อดวงอาทิตย์อยู่เหนือศีรษะและพื้นผิวนอนราบ ความรับอาบรังสีสามารถสูงถึง 1120 W/m2[15] และเราได้อุณหภูมิจากกฎของชเต็ฟฟัน–บ็อลทซ์มันเท่ากับ

T=(1120 W/m2σ)1/4375 K

หรือ 102 °C (ด้านบนชั้นบรรยากาศอุณหภูมิจะสูงขึ้นเป็น: 394 K.) เราสามารถมองพื้นผิวของโลกได้ว่า "พยายาม" กลับเข้าสู่สภาวะสมดุลในช่วงเวลากลางวันแต่ถูกทำให้เย็นลงโดยบรรยากาศ และ "พยายาม" กลับเข้าสู่สภาวะสมดุลกับแสงดาวและแสงจันทร์ในช่วงเวลากลางคืนแต่ถูกทำให้อุ่นโดยบรรยากาศ

ต้นกำเนิด

การอนุพัทธ์ความหนาแน่นของพลังงานโดยทางอุณหพลศาสตร์

ข้อเท็จจริงว่าความหนาแน่นของพลังงาน (energy density) ภายในกล่องที่บรรจุรังสีแปรผันกับ T4 นั้นสามารถหามาได้ด้วยอุณหพลศาสตร์[16]แม่แบบ:Sfn การอนุพัทธ์นี้ใช้ความสัมพันธ์ระหว่างแรงดันรังสี p กับความหนาแน่นของพลังงานภายใน (internal energy) u ซึ่งสามารถแสดงได้ด้วยรูปแบบของเทนเซอร์ความเค้น-พลังงานแม่เหล็กไฟฟ้า (electromagnetic stress–energy tensor) ความสัมพันธ์นี้คือ:

p=u3.

จากความสัมพันธ์ทางอุณหพลศาสตร์มูลฐาน (fundamental thermodynamic relation)

dU=TdSpdV,

หลังจากหารด้วย dV และตรึงค่า T ไว้ เราจึงได้นิพจน์ดังต่อไปนี้:

(UV)T=T(SV)Tp=T(pT)Vp.

สมการสุดท้ายได้มาจากความสัมพันธ์ของแมกซ์เวลล์:

(SV)T=(pT)V.

จากนิยามของความหนาแน่นของพลังงาน เราจึงได้

U=uV

โดยความหนาแน่นของพลังงานของการแผ่รังสีขึ้นอยู่กับอุณหภูมิเท่านั้น ดังนั้น

(UV)T=u(VV)T=u.

แล้วสมการนี้

(UV)T=T(pT)Vp,

เมื่อแทน (UV)T และ p ด้วยนิพจน์ซึ่งสมมูลของแต่ละอันลงไปในสมการ ก็จะเขียนใหม่ได้เป็น

u=T3(uT)Vu3.

ในเมื่ออนุพันธ์ย่อย (uT)V สามารถแสดงออกเป็นความสัมพันธ์ระหว่าง u และ T เพียงสองอย่างเท่านั้น (ถ้าย้ายข้างไปอยู่อีกฝั่งของสมการ) เราสามารถเปลี่ยนอนุพันธ์ย่อยนี้เป็นอนุพันธ์แบบธรรมดา และหลังจากแยกผลต่างเชิงอนุพันธ์ออกจากกันแล้วสมการจะกลายเป็น

du4u=dTT,

ซึ่งนำไปสู่ u=AT4 โดย A เป็นค่าคงตัวของปริพันธ์ค่าหนึ่ง

การอนุพัทธ์จากกฎของพลังค์

ไฟล์:Stefan-Boltzmann Law.png
การอนุพัทธ์กฎของชเต็ฟฟัน–บ็อลทซ์มันด้วยกฎของพลังค์

เราสามารถอนุพัทธ์กฎนี้ได้ด้วยการพิจารณาพื้นผิวของวัตถุดำแบนราบราบขนาดเล็กซึ่งแผ่รังสีออกมาเป็นครึ่งทรงกลม และจะใช้ระบบพิกัดทรงกลมในการอนุพัทธ์ โดย θ เป็นมุมเชิงขั้ว (zenith angle) และ φ เป็นมุมทิศ (azimuth angle) พื้นผิวของวัตถุดำแบนราบอยู่บนระนาบ xy ที่ θ = แม่แบบ:Pi/2

ความเข้มของแสงที่เปล่งออกมาจากพื้นผิววัตถุดำถูกกำหนดโดยกฎของพลังค์เป็น:

I(ν,T)=2hν3c21ehν/(kT)1.
โดย

I(ν,T)AdνdΩ คือปริมาณของกำลังที่แผ่ออกมาโดยพื้นที่ผิว A ผ่านมุมตัน ในช่วงความถี่ระหว่าง ν และ ν + .

กฎของชเต็ฟฟัน–บ็อลทซ์มันกำหนดกำลังที่เปล่งออกมาต่อหน่วยพื้นที่ของวัตถุเป็น

PA=0I(ν,T)dνcosθdΩ

โคไซน์มีอยู่ในสมการเพราะวัตถุดำเป็นแหล่งกำเนิดรังสีแบบลัมแบร์ท (นั่นคือ ปฏิบัติตามกฎโคไซน์ของลัมแบร์ท) หมายความว่าความเข้มที่ตรวจวัดได้ตลอดทรงกลมนั้นจะเท่ากับความเข้มจริงคูณด้วยโคไซน์ของมุมเชิงขั้ว เราจำเป็นเป็นต้องปริพันธ์ dΩ=sinθ dθdφ ตลอดครึ่งทรงกลม และปริพันธ์ ν จาก 0 ถึง ∞ เพื่ออนุพัทธ์หากฎของชเต็ฟฟันบ็อลทซ์มัน

PA=0I(ν,T)dν02πdφ0π/2cosθsinθdθ=π0I(ν,T)dν

แล้วใส่ค่า I ลงไป:

PA=2πhc20ν3ehνkT1dν

เราต้องใช้การแทนที่เพื่อแก้ปริพันธ์นี้

u=hνkTdu=hkTdν

และได้:

PA=2πhc2(kTh)40u3eu1du.

ปริพันธ์ฝั่งขวาเป็นแบบมาตรฐานซึ่งมีชื่อเรียกหลายชื่อ มันเป็นกรณีเฉพาะของปริพันธ์โพส-ไอน์สไตน์ (Bose-Einstein integral), โพลีลอการิทึม (Polylogarithm) หรือฟังก์ชันซีตาของรีมัน ζ(s) ค่าของปริพันธ์เท่ากับ 6ζ(4)=π415 ทำให้ได้ผลลัพธ์สำหรับพื้นผิววัตถุดำเป็น:

j=σT4,σ=2π5k415c2h3=π2k4603c2.

สุดท้าย แม้การพิสูจน์นี้เริ่มจากการพิจารณาพื้นผิวแบนราบขนาดเล็กเท่านั้น แต่เราสามารถประมาณพื้นผิวที่อนุพันธ์ได้ (Differentiable manifold) ทุกผิวด้วยพื้นผิวแบนราบขนาดเล็กได้ พลังงานทั้งหมดที่แผ่ออกมาคือผลรวมของพลังงานที่แผ่ออกมาจากพื้นผิวทั้งหมดตราบใดที่ลักษณะทางเรขาคณิตของพื้นผิวนั้นไม่ทำให้วัตถุดำต้องดูดกลืนรังสีที่ตัวเองเปล่งออกมากลับเข้าไป และพื้นที่ผิวทั้งหมดคือผลรวมของพื้นที่ของพื้นผิวแต่ละผิว ดังนั้นกฎนี้จึงเป็นจริงสำหรับวัตถุดำแบบคอนเวกซ์หรือนูน (convex set) ทุกวัตถุตราบใดที่พื้นผิวมีอุณหภูมิเท่ากันตลอดทั้งผิว กฎนี้สามารถขยายไปใช้กับวัตถุที่ไม่นูนได้เพียงใช้ข้อเท็จจริงที่ว่าเปลือกหุ้มคอนเวกซ์ (convex hull) ของวัตถุดำนั้นแผ่รังสีเสมือนตัวมันเองเป็นวัตถุดำ

ความหนาแน่นของพลังงาน

เราสามารถคำนวณความหนาแน่นของพลังงานรวม U ได้ในลักษณะคล้ายกัน ต่างกันเพียงคราวนี้เราจะปริพันธ์ตลอดทั้งทรงกลม และไม่มีโคไซน์ และเราจะหารฟลักซ์พลังงาน (U c) ด้วยอัตราเร็ว c เพื่อให้ค่าความหนาแน่นของพลังงาน U:

U=1c0I(ν,T)dνdΩ

ดังนั้น 0π/2cosθsinθdθ ถูกแทนที่ด้วย 0πsinθdθ, ซึ่งให้ตัวประกอบเพิ่มค่าเท่ากับ 4

ดังนั้น จากทั้งหมดได้:

U=4cσT4

ดูเพิ่ม

อ้างอิง

แม่แบบ:รายการอ้างอิง

บรรณานุกรม

แหล่งข้อมูลอื่น

แม่แบบ:Sister project

แม่แบบ:กฎการแผ่รังสีของวัตถุดำ

  1. แม่แบบ:Cite book
  2. แม่แบบ:Cite book
  3. ในตำราฟิสิกส์ปี ค.ศ. 1875 ของอาด็อล์ฟ วึลเนอร์ (Adolf Wüllner) ได้มีการอ้างอิงผลการทดลองของทินดัลล์และเพิ่มประมาณการอุณหภูมิที่สอดคล้องกับสีต่าง ๆ ของเสนใยทองคำขาวเข้าไป: จาก (Wüllner, 1875), หน้า 215: "Wie aus gleich zu besprechenden Versuchen von Draper hervorgeht, … also fast um das 12fache zu." (ตามการทดลองของเดรเปอร์ซึ่งจะอภิปรายในอีกสักนิด การเรืองแสงสีแดงอ่อนสอดคล้องกับอุณหภูมิประมาณ 525°[C] การเรืองแสงสีขาวเต็มสอดคล้องกับ[อุณหภูมิ]ประมาณ 1200°[C] ดังนั้นแม้อุณหภูมิจะสูงขึ้นมากกว่าสองเท่าเพียงเล็กน้อย ความเข้มของรังสีกลับเพิ่มขึ้นจาก 10.4 เป็น 122 หรือเกือบ 12 เท่า)
  4. 4.0 4.1 แม่แบบ:Cite journal
  5. ชเต็ฟฟันกล่าวว่า (Stefan, 1879), หน้า 421: "Zuerst will ich hier die Bemerkung anführen, … die Wärmestrahlung der vierten Potenz der absoluten Temperatur proportional anzunehmen." (ก่อนอื่น ผมอยากชี้แจงถึงสังเกตการณ์ซึ่งวึลเนอร์เพิ่มลงไปในรายงานของการทดลองของทินดัลล์เกี่ยวกับการแผ่รังสีของเส้นใยทองคำขาวซึ่งถูกทำให้เรืองแสงด้วยกระแสไฟฟ้าในตำราของเขา เพราะสังเกตการณ์นี้ทำให้ผมอนุมานได้ว่าการแผ่รังสีความร้อนนั้นมีสัดส่วนกับกำลังสี่ของอุณหภูมิสัมบูรณ์)
  6. แม่แบบ:Cite journal
  7. Massimiliano Badino, The Bumpy Road: Max Planck from Radiation Theory to the Quantum (1896–1906) (2015), p. 31.
  8. Soret, J.L. (1872) "Comparaison des intensités calorifiques du rayonnement solaire et du rayonnement d'un corps chauffé à la lampe oxyhydrique" [การเปรียบเทียบความเข้มความร้อนของรังสีอาทิตย์กับรังสีจากวัตถุซึ่งถูกทำให้ร้อนด้วยเครื่องพ่นไฟออกซิไฮโดรเจน], Archives des sciences physiques et naturelles (Geneva, Switzerland), 2nd series, 44: 220–229 ; 45: 252–256.
  9. แม่แบบ:Cite web
  10. แม่แบบ:Cite journal ในหน้า 505, นักฟิสิกส์ชาวสก็อตจอห์น เจมส์ วอเตอร์สตัน (John James Waterston) ประมาณอุณหภูมิบนพื้นผิวดวงอาทิตย์ไว้ว่าอาจเทากับ 12,880,000°.
  11. ดูที่:
    • แม่แบบ:Cite journal หน้า 36, ปูยเยประมาณอุณหภูมิของดวงอาทิตย์ไว้: " … cette température pourrait être de 1761° … " ( … อุณหภูมินี้ [นั่นคือ ของดวงอาทิตย์] อาจเท่ากับ 1761° … )
    • คำแปลภาษาอังกฤษ: Pouillet (1838) "Memoir on the solar heat, on the radiating and absorbing powers of atmospheric air, and on the temperature of space" in: Taylor, Richard, ed. (1846) Scientific Memoirs, Selected from the Transactions of Foreign Academies of Science and Learned Societies, and from Foreign Journals. vol. 4. London, England: Richard and John E. Taylor. pp. 44–90 ; see pp. 55–56.
  12. แม่แบบ:Cite web
  13. แม่แบบ:Cite report
  14. แม่แบบ:Cite web
  15. แม่แบบ:Cite web
  16. แม่แบบ:Cite web