ลำดับเรขาคณิต

จาก testwiki
ไปยังการนำทาง ไปยังการค้นหา

ในทางคณิตศาสตร์ ลำดับเรขาคณิต (แม่แบบ:Langx) คือลำดับของจำนวนซึ่งอัตราส่วนของสมาชิกสองตัวที่อยู่ติดกันในลำดับเป็นค่าคงตัวที่ไม่เป็นศูนย์ ซึ่งอัตราส่วนนั้นเรียกว่า อัตราส่วนร่วม (common ratio) ตัวอย่างเช่น ลำดับ 2, 6, 18, 54, ... เป็นลำดับเรขาคณิตซึ่งมีอัตราส่วนร่วมเท่ากับ 3 และลำดับ 10, 5, 2.5, 1.25, ... มีอัตราส่วนเท่ากับ 0.5 เป็นต้น

ถ้าหากพจน์เริ่มต้นของลำดับเรขาคณิตลำดับหนึ่งคือ a1 และมีอัตราส่วนร่วม r ≠ 0 ดังนั้นพจน์ที่ n ของลำดับนี้คือ

an=a1rn1

หรือในกรณีทั่วไป จะได้

an=amrnm

หรือเขียนได้ด้วยรูปแบบความสัมพันธ์เวียนเกิด

an=ran1

สมบัติเบื้องต้น

การที่จะทำให้ทราบได้ว่าลำดับที่กำหนดให้เป็นลำดับเรขาคณิตหรือไม่ สามารถตรวจสอบได้จากอัตราส่วนของพจน์ที่อยู่ติดกัน ซึ่งจะมีค่าเท่ากันทั้งลำดับ อัตราส่วนร่วมอาจเป็นค่าติดลบก็ได้ ซึ่งจะทำให้เกิดลำดับสลับเครื่องหมาย หมายความว่าจำนวนจะสลับเครื่องหมายบวกลบตลอดทั้งลำดับ เช่น 1, −3, 9, −27, 81, −243, ... เป็นลำดับเรขาคณิตซึ่งมีอัตราส่วนร่วมเท่ากับ −3

พฤติกรรมของจำนวนในการลำดับเรขาคณิตขึ้นอยู่กับค่าของอัตราส่วนร่วม ดังนี้

  • ถ้าเป็นจำนวนบวก ทุกพจน์จะมีเครื่องหมายเหมือนกับพจน์แรก
  • ถ้าเป็นจำนวนลบ ทุกพจน์จะมีเครื่องหมายบวกลบสลับกัน
  • ถ้ามากกว่า 1 ลำดับนั้นจะเพิ่มแบบชี้กำลัง (exponential growth) ไปยังอนันต์
  • ถ้าเท่ากับ 1 ลำดับนั้นจะคงที่ทุกพจน์
  • ถ้ามีค่าอยู่ระหว่าง −1 ถึง 1 แต่ไม่เป็น 0 ลำดับนั้นจะลดแบบชี้กำลัง (exponential decay) ไปยัง 0
  • ถ้าเท่ากับ −1 ลำดับนั้นจะมีเครื่องหมายบวกลบสลับกัน แต่ค่าตัวเลขไม่เปลี่ยนแปลง
  • ถ้าน้อยกว่า −1 ค่าสัมบูรณ์ของพจน์ต่างๆ จะเพิ่มแบบชี้กำลังไปยังอนันต์

จะเห็นว่าลำดับเรขาคณิต (ที่มีอัตราส่วนไม่ใช่ −1, 1 หรือ 0) แสดงให้เห็นถึงการเพิ่มหรือการลดแบบชี้กำลัง ต่างกับการเพิ่ม (หรือลด) แบบเชิงเส้นของลำดับเลขคณิต แต่ลำดับทั้งสองชนิดก็มีความเกี่ยวข้องกัน นั่นคือ ถ้าหากใส่ฟังก์ชันเลขชี้กำลังลงในทุกพจน์ของลำดับเลขคณิตก็จะได้ลำดับเรขาคณิต และหากใส่ฟังก์ชันลอการิทึมลงในทุกพจน์ของลำดับเรขาคณิตก็จะได้ลำดับเลขคณิต

ผลรวม

แม่แบบ:บทความหลัก ผลรวมของสมาชิกในลำดับเรขาคณิต เรียกว่า อนุกรมเรขาคณิต (แม่แบบ:Langx)

k=0nark=ar0+ar1+ar2+ar3++arn

เราสามารถทำสูตรให้ง่ายขึ้นโดยการคูณทั้งสองข้างของสมการด้วย (1r) แล้วเราจะได้

(1r)k=0nark=aarn+1

ซึ่งพจน์อื่นๆ จะตัดกันหายไปหมด จัดรูปแบบใหม่ จะได้สูตรสำหรับคำนวณผลรวม โดยที่ r ≠ 1

k=0nark=a(rn+11)r1

ดังนั้นกรณีทั่วไปของสูตรนี้คือ

k=mnark=a(rn+1rm)r1

สำหรับอนุกรมเรขาคณิตที่มีแต่เลขชี้กำลังของ r เป็นจำนวนคู่ คูณทั้งสองข้างด้วย (1r2)

(1r2)k=0nar2k=aar2n+2

จะได้สูตร

k=0nar2k=a(1r2n+2)1r2

ส่วนเลขชี้กำลังของ r ที่มีแต่จำนวนคี่

(1r2)k=0nar2k+1=arar2n+3

จะได้สูตร

k=0nar2k+1=ar(1r2n+2)1r2

อนุกรมเรขาคณิตไม่จำกัด

อนุกรมเรขาคณิตไม่จำกัด คืออนุกรมเรขาคณิตที่มีจำนวนพจน์ไม่จำกัดหรือเป็นจำนวนอนันต์ อนุกรมนี้จะลู่เข้าค่าใดค่าหนึ่งก็ต่อเมื่อ ค่าสัมบูรณ์ของอัตราส่วนร่วมมีค่าน้อยกว่าหนึ่ง (|r|<1) ค่าของอนุกรมเรขาคณิตไม่จำกัดสามารถคำนวณได้จากสูตรของผลรวมจำกัด

k=0ark=limnk=0nark=limna(1rn+1)1r=limna1rlimnarn+11r

ซึ่ง rk จะมีค่าเข้าใกล้ 0 เมื่อ k มีค่าเข้าใกล้อนันต์และ |r|<1 ดังนั้น

k=0ark=a1r0=a1r

สำหรับอนุกรมเรขาคณิตที่มีแต่เลขชี้กำลังของ r เป็นจำนวนคู่ จะได้สูตร

k=0ar2k=a1r2

ส่วนเลขชี้กำลังของ r ที่มีแต่จำนวนคี่ จะได้สูตร

k=0ar2k+1=ar1r2

โดยที่สูตรทั้งหมดด้านบนจะใช้ได้เมื่อ |r|<1 เท่านั้น นอกเหนือจากนี้จะเป็นอนุกรมลู่ออก

ผลคูณ

ผลคูณของลำดับเรขาคณิตก็คือผลคูณของทุกพจน์ในลำดับ และถ้าหากพจน์ทั้งหมดเป็นจำนวนบวก เราจะสามารถคำนวณผลคูณได้ด้วยการหาค่ามัชฌิมเรขาคณิตของพจน์แรกกับพจน์สุดท้าย แล้วยกกำลังด้วยจำนวนพจน์ทั้งหมด ดังนี้

i=0nari=(a1an+1)n+1 เมื่อ a,r>0
พิสูจน์

กำหนดให้ผลคูณของลำดับเลขคณิตแทนด้วย P

P=aarar2arn1arn

รวมผลจากการคูณเข้าด้วยกัน จะได้

P=an+1r1+2+3++(n1)+n

นำสูตรผลรวมของอนุกรมเลขคณิตมาใช้กับเลขชี้กำลังของ r

P=an+1rn(n+1)2
P=(arn2)n+1

ยกกำลังสองทั้งสองข้าง

P2=(a2rn)n+1=(aarn)n+1

และในที่สุดก็จะได้

P2=(a1an+1)n+1
P=(a1an+1)n+12

ดูเพิ่ม

แหล่งข้อมูลอื่น