การวิเคราะห์เชิงซ้อน

จาก testwiki
ไปยังการนำทาง ไปยังการค้นหา
กราฟลงสีของฟังก์ชัน
แม่แบบ:Math
สีสันแทนค่าอาร์กิวเมนต์ และความสว่างแทนขนาดของจำนวนเชิงซ้อน

การวิเคราะห์เชิงซ้อน (แม่แบบ:Langx) หรืออีกชื่อหนึ่งคือ ทฤษฎีของฟังก์ชันของตัวแปรเชิงซ้อน (แม่แบบ:Langx) เป็นสาขาของคณิตวิเคราะห์ที่ศึกษาฟังก์ชันของจำนวนเชิงซ้อน การวิเคราะห์เชิงซ้อนมีประยุกต์ใช้ในสาขาอื่น ๆ ของคณิตศาสตร์มากมาย เช่น เรขาคณิตเชิงพีชคณิต[1] ทฤษฎีจำนวน คอมบินาทอริกส์เชิงวิเคราะห์ และคณิตศาสตร์ประยุกต์ ในฟิสิกส์มีการใช้ความรู้ทางการวิเคราะห์เชิงซ้อนเพื่อแก้ปัญหาใน กลศาสตร์ของไหล เทอร์โมไดนามิกส์ และ ฟิสิกส์ควอนตัม[2]

ฟังก์ชันที่นิยมศึกษาในสาขาการวิเคราะห์เชิงซ้อนคือ ฟังก์ชันโฮโลมอร์ฟิก ซึ่งสามารถหาอนุพันธ์เชิงซ้อนได้ทุกจุดในโดเมน และสามารถประมาณค่าได้ด้วยอนุกรมเทย์เลอร์รอบจุดนั้น ฟังก์ชันโฮโลมอร์ฟิกทุกฟังก์ชันจึงเป็น ฟังก์ชันวิเคราะห์

ประวัติ

การวิเคราะห์เชิงซ้อนเป็นสาขาพื้นฐานของคณิตศาสตร์ที่มีมาอย่างยาวนานตั้งแต่ศตวรรษที่ 18 นักคณิตศาสตร์สำคัญที่มีผลงานในสาขานี้เช่น เลออนฮาร์ด ออยเลอร์ คาร์ล ฟรีดริช เกาส์ แบร์นฮาร์ท รีมันน์ โอกุสแต็ง-หลุยส์ โคชี คาร์ล ไวเออร์ชตราส[3] และ ลาร์ส อาห์ลฟอร์ส[4] ตลอดจนนักคณิตศาสตร์ในศตวรรษที่ 20 คนอื่น ๆ

บทประยุกต์สำคัญของการวิเคราะห์เชิงซ้อนคือใช้ในระบบพลวัตเชิงซ้อน ซึ่งเป็นการพิจารณาระบบพลวัตของฟังก์ชันเชิงซ้อน[5] และภาพแฟรกทัลที่เกิดขึ้นจากระบบพลวัติเชิงซ้อนนั้น ในทางทฤษฎีจำนวน การวิเคราะห์เชิงซ้อนเป็นเครื่องมือสำคัญของทฤษฎีจำนวนเชิงวิเคราะห์ โดยผ่านฟังก์ชันในการวิเคราะห์เชิงซ้อนรูปแบบหนึ่งซึ่งเรียกว่า ฟังก์ชันมอดุลาร์[6]

ฟังก์ชันโฮโลมอร์ฟิก

แม่แบบ:หลัก ฟังก์ชันเชิงซ้อน คือฟังก์ชัน f: จากเซตของจำนวนเชิงซ้อน ไปยังเซตของจำนวนเชิงซ้อน

ฟังก์ชันเชิงซ้อน f จะหาอนุพันธ์ที่จุด z0 ได้ก็ต่อเมื่อลิมิต

f(z0)=limzz0f(z)f(z0)zz0

หาค่าได้ ซึ่งเป็นนิยามที่คล้ายคลึงกับนิยามการอนุพันธ์ของฟังก์ชันค่าจริง แต่เนื่องจากลิมิตของจำนวนเชิงซ้อนต้องหาค่าได้ทุกทิศทาง และไม่จำเพาะเฉพาะทิศทางซ้ายและขวา (หรือบวกและลบ) อย่างในลิมิตของฟังก์ชันค่าจริง ความแตกต่างนี้ทำให้ฟังก์ชันเชิงซ้อนที่หาอนุพันธ์ได้มีลักษณะแตกต่างจากฟังก์ชันค่าจริงที่หาอนุพันธ์ได้

ฟังก์ชันเชิงซ้อนที่หาอนุพันธ์ได้ทุกจุดบนเซตเปิด Ω บางเซตของจำนวนเชิงซ้อนจะเรียกว่า ฟังก์ชันโฮโลมอร์ฟิกบน Ω

สมบัติสำคัญของฟังก์ชันโฮโลมอร์ฟิก เช่น

  • ฟังก์ชันโฮโลมอร์ฟิกทุกฟังก์ชันสามารถหาอนุพันธ์ได้เป็นอนันต์
  • ฟังก์ชันโฮโลมอร์ฟิกทุกฟังก์ชันเป็นฟังก์ชันวิเคราะห์ นั่นคือ สำหรับแต่ละจุดในโดเมน ฟังก์ชันโฮโลมอร์ฟิกสามารถเขียนแทนได้ด้วยอนุกรมกำลังที่ลู่เข้า

ปริพันธ์ตามเส้นรอบขอบ

แม่แบบ:หลักเครื่องมือสำคัญในการวิเคราะห์เชิงซ้อนอีกอันหนึ่งคือ ปริพันธ์ตามเส้น

บนระนาบเชิงซ้อน ทฤษฎีบทปริพันธ์ของโคชีกล่าวว่า หากพิจารณาปริพันธ์ตามเส้นของเส้นโค้งปิด (ซึ่งเรียกว่าปริพันธ์ตามเส้นรอบขอบ) และฟังก์ชันที่หาปริพันธ์เป็นฟังก์ชันโฮโลมอร์ฟิกบนบริเวณที่ทางเดินปิดนั้นล้อมรอบ แล้วปริพันธ์จะมีค่าเท่ากับศูนย์โดยทันที และค่าของฟังก์ชันในบริเวณปิดดังกล่าว จะหาได้จากปริพันธ์ตามเส้นตัวหนึ่งบนทางเดินปิดนั้น (ดู สูตรปริพันธ์ของโคชี) ในบางครั้ง เราสามารถใช้การหาปริพันธ์ตามเส้นบนระนาบเชิงซ้อน เพื่อหาปริพันธ์ของฟังก์ชันค่าจริงบางตัวได้ ซึ่งเรียกวิธีการนี้ว่า วิธีการปริพันธ์ตามเส้นรอบขอบ

ฟังก์ชันเชิงซ้อนบางตัวจะมี โพล ซึ่งเป็นจุดที่ทำให้ค่าของฟังก์ชันเชิงซ้อนไม่มีขอบเขต เราสามารถคำนวณ เรซิดิว สำหรับแต่ละโพลได้ ซึ่งเรซิดิวจะใช้ในการหาปริพันธ์ตามเส้นรอบขอบได้ ความสัมพันธ์นี้ปรากฏใน ทฤษฎีบทเรซิดิว

อ้างอิง

แม่แบบ:รายการอ้างอิง

อ่านเพิ่มเติม

ดูเพิ่ม

แม่แบบ:คณิตศาสตร์