กฎลูกโซ่
แม่แบบ:ต้องการอ้างอิง{{#invoke:sidebar|collapsible | class = plainlist | titlestyle = padding-bottom:0.25em; | pretitle = บทความนี้เป็นส่วนหนึ่งของ | title = แคลคูลัส | image = | listtitlestyle = text-align:center; | liststyle = border-top:1px solid #aaa;padding-top:0.15em;border-bottom:1px solid #aaa; | expanded =
| abovestyle = padding:0.15em 0.25em 0.3em;font-weight:normal; | above = ทฤษฎีบทมูลฐาน แม่แบบ:Startflatlist
แม่แบบ:Endflatlistแม่แบบ:Startflatlist
| list2name = อนุพันธ์ | list2titlestyle = display:block;margin-top:0.65em; | list2title = แคลคูลัสเชิงอนุพันธ์ | list2 =
แม่แบบ:Sidebar
| list3name = ปริพันธ์ | list3title = แคลคูลัสเชิงปริพันธ์ | list3 =
แม่แบบ:Sidebar
| list4name = อนุกรม | list4title = อนุกรม | list4 =
แม่แบบ:Sidebar
| list5name = เวกเตอร์ | list5title = แคลคูลัสเวกเตอร์ | list5 =
แม่แบบ:Sidebar
| list6name = หลายตัวแปร | list6title = แคลคูลัสหลายตัวแปร | list6 =
แม่แบบ:Sidebar
| list7name = พิเศษ | list7title = พิเศษ | list7 = แม่แบบ:Startflatlist
}}
ในวิชาแคลคูลัส กฎลูกโซ่ (แม่แบบ:Langx) คือสูตรสำหรับการหาอนุพันธ์ของฟังก์ชันคอมโพสิต
เห็นได้ชัดว่า หากตัวแปร y เปลี่ยนแปลงตามตัวแปร u ซึ่งเปลี่ยนแปลงตามตัวแปร x แล้ว อัตราการเปลี่ยนแปลงของ y เทียบกับ x หาได้จากผลคูณ ของอัตราการเปลี่ยนแปลงของ y เทียบกับ u คูณกับ อัตราการเปลี่ยนแปลงของ u เทียบกับ x
สมมติให้คนหนึ่งปีนเขาด้วยอัตรา 0.5 กิโลเมตรต่อชั่วโมง อุณหภูมิจะลดต่ำลงเมื่อระดับความสูงเพิ่มขึ้น สมมติให้อัตราเป็น ลดลง 6 °F ต่อกิโลเมตร ถ้าเราคูณ 6 °F ต่อกิโลเมตรด้วย 0.5 กิโลเมตรต่อชั่วโมง จะได้ 3 °F ต่อชั่วโมง การคำนวณเช่นนี้เป็นตัวอย่างของการประยุกต์ใช้กฎลูกโซ่
ในทางพีชคณิต กฎลูกโซ่ (สำหรับตัวแปรเดียว) ระบุว่า ถ้าฟังก์ชัน f หาอนุพันธ์ได้ที่ g(x) และฟังก์ชัน g หาอนุพันธ์ได้ที่ x คือเราจะได้ ดังนั้น
นอกจากนี้ ด้วยสัญกรณ์ของไลบ์นิซ กฎลูกโซ่เขียนแทนได้ดังนี้:
เมื่อ ระบุว่า f เปลี่ยนแปลงตาม g เหมือนเป็นตัวแปรหนึ่ง
ในการหาปริพันธ์ ส่วนกลับของกฎลูกโซ่คือการหาปริพันธ์โดยการแทนค่า
กฎเลขยกกำลังทั่วไป
กฎเลขยกกำลังทั่วไปสามารถนำมาใช้กับกฎลูกโซ่ได้
ตัวอย่างข้อที่ 1
พิจารณา . เทียบได้กับ โดยที่ และ ดังนั้น
ตัวอย่างข้อที่ 2
ในการหาอนุพันธ์ของฟังก์ชันตรีโกณมิติ
เราสามารถเขียน ด้วย และ จากกฎลูกโซ่ จะได้
เนื่องจาก และ
กฎลูกโซ่สำหรับหลายตัวแปร
กฎลูกโซ่ใช้ได้กับฟังก์ชันหลายตัวแปรเช่นกัน ตัวอย่างเช่น ถ้าเรามีฟังก์ชัน โดยที่
- และ
ดังนั้น
บทพิสูจน์กฎลูกโซ่
ให้ f และ g เป็นฟังก์ชัน และให้ x เป็นจำนวนที่ f สามารถหาอนุพันธ์ได้ที่ g(x) และ g หาอนุพันธ์ได้ที่ x ดังนั้น จากนิยามของการหาอนุพันธ์ได้ จะได้
- ซึ่ง ขณะที่
ในทำนองเดียวกัน
- ซึ่ง ขณะที่
จะได้
ซึ่ง จะเห็นว่าขณะที่ นั้น และ ดังนั้น
- ขณะที่
กฎลูกโซ่พื้นฐาน
กฎลูกโซ่นั้นเป็นคุณสมบัติพื้นฐานของนิยามของอนุพันธ์ทั้งหมด เช่น ถ้า E F และ G เป็น ปริภูมิบานาค (รวมไปถึงปริภูมิยูคลิดด้วย) และ f : E → F และ g : F → G เป็นฟังก์ชัน และถ้า x เป็นสมาชิกของ E ซึ่ง f หาอนุพันธ์ได้ที่ x และ g หาอนุพันธ์ได้ที่ f(x) แล้ว อนุพันธ์ (อนุพันธ์เฟรเชต์) ของฟังก์ชันคอมโพสิต g o f ที่ x จะเป็นดังนี้
สังเกตว่าอนุพันธ์นี้เป็นการแปลงเชิงเส้น ไม่ใช่ตัวเลข ถ้าการแปลงเชิงเส้นแทนด้วยเมทริกซ์ (จาโคเบียนเมทริกซ์) การรวมทางด้านขวาจะกลายเป็นการคูณเมทริกซ์
การกำหนดกฎลูกโซ่ที่ชัดเจนสามารถทำได้จากวิธีที่เป็นทั่วไปมากที่สุด คือ ให้ M N และ P เป็นแมนิโฟลด์ Ck (หรือบานาคแมนิโฟลด์) และให้
- f : M → N และ g : N → P
เป็นการแปลงที่หาอนุพันธ์ได้ อนุพันธ์ของ f แทนด้วย df จะเป็นการแปลงจากปมสัมผัสของ M ไปยังปมสัมผัสของ N และสามารถเขียนแทนด้วย
ด้วยวิธีนี้ รูปแบบของอนุพันธ์และปมสัมผัสจะถูกมองเห็นในรูปฟังก์เตอร์บน Category ของแมนิโฟลด์ C∞ โดยมีการแปลง C∞ เป็นสัณฐาน
เทนเซอร์กับกฎลูกโซ่
ดู สนามเทนเซอร์ สำหรับคำอธิบายเกี่ยวกับบทบาทพื้นฐานของกฎลูกโซ่ในธรรมชาติทางเรขาคณิตของเทนเซอร์