จำนวนอดิศัย

จาก testwiki
ไปยังการนำทาง ไปยังการค้นหา

แม่แบบ:ลิงก์ไปภาษาอื่น ในทางคณิตศาสตร์นั้น จำนวนอดิศัย (แม่แบบ:Langx) คือ จำนวนอตรรกยะที่ไม่ใช่จำนวนเชิงพีชคณิต ซึ่งหมายถึงจำนวนที่ไม่ใช่ราก (คำตอบ) ของสมการพหุนาม

anxn+an1xn1++a1x1+a0=0

โดย n ≥ 1 และสัมประสิทธิ์ aj เป็นจำนวนเต็ม (หรือจำนวนตรรกยะ ซึ่งให้ความหมายเดียวกัน เนื่องจากเราสามารถคูณสัมประสิทธิ์ทั้งหมดด้วยตัวคูณร่วมน้อย เพื่อให้สัมประสิทธิ์ทั้งหมดกลายเป็นจำนวนเต็ม) ซึ่งไม่เท่ากับศูนย์อย่างน้อยหนึ่งตัว

พาย (π) เป็นจำนวนอดิศัยที่รู้จักกันดี

สมบัติ

จำนวนอดิศัยไม่สามารถนับได้

ตามหลักทฤษฎีเซต เซตของจำนวนเชิงพีชคณิตทั้งหมดนั้น สามารถนับได้ (สามารถสร้างฟังก์ชันหนึ่งต่อหนึ่งทั่วถึง ระหว่างเซตของจำนวนนับและจำนวนเชิงพีชคณิตได้) ในขณะที่เซตของจำนวนจริงทั้งหมด ไม่สามารถนับได้ (ไม่สามารถสร้างฟังก์ชันหนึ่งต่อหนึ่งทั่วถึง จากเซตของจำนวนนับไปยังจำนวนจริงได้) ดังนั้นเซตของจำนวนอดิศัยทั้งหมดนั้นจึง ไม่สามารถนับได้

ในมุมมองดังกล่าว เราสามารถกล่าวได้ว่า "จำนวนอดิศัยทั้งหมดมีมากกว่าจำนวนเชิงพีชคณิต" อย่างไรก็ตาม ในปัจจุบันนั้นมีจำนวนอดิศัยเพียงไม่กี่กลุ่มเท่านั้นที่เรารู้จัก (ในทำนองเดียวกันกับปัญหาที่ไม่สามารถคำนวณได้ในทฤษฎีการคำนวณได้) โดยทั่วไป การพิสูจน์ว่าจำนวนหนึ่ง ๆ เป็นจำนวนอดิศัยนั้น ยากอย่างยิ่ง อย่างไรก็ตามคุณสมบัติของจำนวนปกติอาจจะช่วยในการระบุจำนวนอดิศัยจากจำนวนอื่นๆ ได้

ประวัติการค้นพบจำนวนอดิศัย

จำนวนอดิศัยตัวแรกถูกค้นพบโดย Joseph Liouville ในปี ค.ศ. 1844 จึงมีชื่อเรียกว่าค่าคงที่ Liouville

จำนวนอดิศัยที่สำคัญ

จำนวนอดิศัยอื่น ๆ ที่เรารู้จักมีดังต่อไปนี้:

  • ea ในกรณีที่ a เป็นจำนวนเชิงพีชคณิตที่ไม่เท่ากับศูนย์ (สังเกตว่า e เป็นจำนวนอดิศัย) (พิสูจน์โดยทฤษฎี Lindemann–Weierstrass )
  • π (พิสูจน์โดยทฤษฎี Lindemann–Weierstrass )
  • 2√2 หรือในรูปแบบทั่วไป ab โดย a ≠ 0,1 และเป็นจำนวนเชิงพีชคณิต และ b เป็นจำนวนอตรรกยะเชิงพีชคณิต ซึ่งเป็นคำตอบสำหรับปัญหาข้อที่เจ็ดของฮิลเบิร์ต ในกรณีขยายของปัญหาข้อที่เจ็ดของฮิลเบิร์ต ที่ต้องการให้พิจารณาว่า ab เป็นจำนวนอดิศัยหรือไม่เมื่อ a ≠ 0,1 และเป็นจำนวนเชิงพีชคณิต และ b เป็นจำนวนอตรรกยะใด ๆ นั้นยังคงไม่มีใครสามารถให้คำตอบได้
  • ln (a) ถ้า a เป็นจำนวนตรรกยะบวกและ a ≠ 1
  • k=010βk;β>1 โดย ββ เป็นฟังก์ชันพื้น (floor function) เช่น ถ้า β = 2 ตัวเลขนี้คือ 0.11010001000000010000000000000001000…


ความสำคัญของจำนวนอดิศัย

การค้นพบจำนวนอดิศัย สามารถนำไปใช้พิสูจน์ความ เป็นไปไม่ได้ ในการแก้ปัญหาของคณิตศาสตร์กรีกโบราณหลายข้อที่เกี่ยวกับ การสร้างรูปด้วยไม้บรรทัดและวงเวียน เช่น การสร้างสี่เหลี่ยมจตุรัสจากวงกลม ซึ่งเป็นไปไม่ได้เนื่องจาก π เป็นจำนวนอดิศัย. ในขณะที่การสร้างรูปด้วยไม้บรรทัดและวงเวียน สามารถสร้างได้แต่รูปที่มีความยาวในขอบเขตของจำนวนเชิงพีชคณิตเท่านั้น


อ้างอิง

  1. Le Lionnais, F. Les nombres remarquables (แม่แบบ:Isbn). Paris: Hermann, p. 46, 1979. via Wolfram Mathworld, Transcendental Number
  2. 2.0 2.1 แม่แบบ:Cite book via Wolfram Mathworld, Transcendental Number
  3. แม่แบบ:Cite book
  4. แม่แบบ:Cite journal
  5. Allouche & Shallit (2003) p.387
  6. แม่แบบ:Harvnb