กฎการเคลื่อนที่ของนิวตัน

จาก testwiki
ไปยังการนำทาง ไปยังการค้นหา

แม่แบบ:ลิงก์ไปภาษาอื่น แม่แบบ:แก้ภาษา แม่แบบ:Redirect

กฎข้อแรกและข้อที่สองของนิวตัน เขียนเป็นภาษาละติน จาก Philosophiae Naturalis Principia Mathematica ฉบับดั้งเดิม ค.ศ. 1687

แม่แบบ:Sidebar with collapsible lists กฎการเคลื่อนที่ของนิวตันเป็นกฎทางกายภาพสามข้อที่เป็นรากฐานของกลศาสตร์ดั้งเดิม ใช้สำหรับการอธิบายความสัมพันธ์ระหว่างวัตถุกับแรงที่กระทำต่อวัตถุนั้น และการเคลื่อนที่เนื่องจากแรงเหล่านั้น โดยในกฎข้อแรกเป็นการนิยามความหมายของแรง กฎข้อที่สองให้วิธีการวัดแรงในเชิงปริมาณ และกฎข้อที่สามอ้างว่าไม่มีแรงโด่ดเดี่ยว ในสามร้อยปีที่ผ่านมากฎทั้งสามข้อได้รับการตีความในหลาย ๆ ด้าน[1] และสามารถสรุปได้ดังนี้


แม่แบบ:Nowrap ในกรอบอ้างอิงเฉื่อย วัตถุจะยังคงหยุดนิ่งหรือเคลื่อนที่ด้วยความเร็วคงที่ เว้นแต่จะมีแรงมากระทำ[2][3]
แม่แบบ:Nowrap ในกรอบอ้างอิงเฉื่อย แรงลัพธ์ที่กระทำต่อมวลส่งผลให้มวลเคลื่อนที่ด้วยความเร่งที่แปรผันตรงต่อแรงลัพธ์และมีขนาดแปรผกผันกับมวล: แม่แบบ:Math (สมมุติว่ามวล แม่แบบ:Math เป็นค่าคงที่ ดูด้านล่าง )
แม่แบบ:Nowrap เมื่อวัตถุหนึ่งออกแรงกระทำต่ออีกวัตถุหนึ่ง จะมีแรงขนาดเท่ากันแต่ทิศทางตรงข้ามกับทิศทางของวัตถุแรก

ไอแซก นิวตัน ได้รวบรวมกฎการเคลื่อนที่ทั้งสามข้อไว้ในหนังสือ Philosophiæ Naturalis Principia Mathematica (Mathematical Principles of Natural Philosophy) ซึ่งตีพิมพ์ครั้งแรกในปี ค.ศ. 1687[4] โดยนิวตันใช้กฎเหล่านี้เพื่ออธิบายและตรวจสอบการเคลื่อนที่ของวัตถุและระบบทางกายภาพ[5] ตัวอย่างเช่นในเล่มที่สามของตำรา นิวตันแสดงให้เห็นว่ากฎการเคลื่อนที่ทั้งสามข้อรวมกับกฎความโน้มถ่วงสากล จะสามารถอธิบายกฎของเคปเลอร์เกี่ยวกับการเคลื่อนที่ของดาวเคราะห์ได้

บางครั้ง อาจมีการพูดถึง กฎข้อที่สี่ ซึ่งระบุว่าแรงเป็นปริมาณเวกเตอร์ คือเป็นไปตามหลักการซ้อนทับ[6][7][8]

ภาพรวม

ไอแซก นิวตัน (ค.ศ. 1643 – 1727) นักฟิสิกส์ผู้เสนอกฎการเคลื่อนที่

กฎของนิวตันถูกใช้กับวัตถุในอุดมคติซึ่งมีขนาดเป็นจุด ๆ เดียว[9] (ไม่มีขนาดและรูปร่าง) เพื่อให้พิจารณาการเคลื่อนที่ได้ง่ายขึ้น ซึ่งทำได้เมื่อวัตถุมีขนาดเล็กเมื่อเทียบกับระยะทางที่ใช้ในการวิเคราะห์หรือการเปลี่ยนรูปร่างไม่มีความสำคัญ ในลักษณะนี้แม้แต่ดาวเคราะห์ก็สามารถถูกทำให้เป็นวัตถุในอุดมคติในการวิเคราะห์การโคจรรอบดาวได้

กฎการเคลื่อนที่ของนิวตันในรูปแบบดั้งเดิมไม่เพียงพอที่จะบ่งบอกลักษณะการเคลื่อนที่ของวัตถุแข็งเกร็งและวัตถุที่เปลี่ยนแปลงรูปร่างได้ ในปี ค.ศ. 1750 เลออนฮาร์ด ออยเลอร์ ได้ประยุกต์กฎการเคลื่อนที่ของนิวตันเพื่อใช้สำหรับวัตถุแข็งเกร็งขึ้น ที่เรียกว่า กฎการเคลื่อนที่ของออยเลอร์ หลังจากนั้นก็นำไปประยุกต์ใช้กับวัตถุที่เปลี่ยนรูปได้เช่นกัน กฎของออยเลอร์สามารถพิสูจน์มาจากกฎของนิวตัน โดยมองวัตถุเป็นชุดของอนุภาคที่แยกออกจากกัน อย่างไรก็ตาม กฎของออยเลอร์ สามารถนำมาใช้เป็นสัจพจน์อธิบายกฎการเคลื่อนที่ของวัตถุที่ขยายได้โดยไม่ขึ้นกับโครงสร้างอนุภาคใด ๆ[10]

กฎของนิวตันนี้ใช้ได้เฉพาะในกรอบอ้างอิงที่เรียกว่ากรอบอ้างอิงเฉื่อยหรือกรอบอ้างอิงนิวโตเนียนเท่านั้น ผู้เขียนบางคนตีความกฎข้อแรกว่าเป็นนิยามกรอบอ้างอิงเฉื่อย จากมุมมองนี้ กฎข้อที่สองใช้ได้เฉพาะเมื่อมีการสังเกตการณ์จากกรอบอ้างอิงเฉื่อยดังนั้นกฎข้อแรกจึงไม่สามารถพิสูจน์ได้ว่าเป็นกรณีพิเศษของกฎข้อที่สอง แต่ผู้เขียนบางคนก็ตีความกฎข้อแรกว่าเป็นกรณีพิเศษของกฎข้อที่สอง[11][12] ซึ่งแนวคิดเรื่องกรอบอ้างอิงเฉื่อยเกิดขึ้นจริงหลังนิวตันได้เสียชีวิตไปนานแล้ว

ในการตีความกฎเหล่านี้ มวล ความเร่ง โมเมนตัม และ แรง ตามปกติมักจะถูกมองว่าเป็นปริมาณที่นิยามแล้ว แต่ก็มีผู้ตีความว่ากฎเป็นสิ่งที่นิยามปริมาณเหล่านี้ด้วยเช่นกัน

ในปัจจุบัน กลศาสตร์นิวโตเนียนถูกแทนที่โดยสัมพัทธภาพพิเศษ แต่ก็ยังเป็นประโยชน์เมื่อใช้กับการเคลื่อนที่ที่ช้ากว่าความเร็วแสงมาก ๆ [13]

กฎการเคลื่อนที่

กฎการเคลื่อนที่ข้อที่ 1

แม่แบบ:บทความหลัก ไฟล์:First law.ogv

กฎข้อแรกระบุว่า ถ้าแรงลัพธ์ (ผลรวมของแรงทั้งหมดที่กระทำต่อวัตถุ) เป็นศูนย์แล้วความเร็วของวัตถุจะเป็นค่าคงที่ ความเร็วเป็นปริมาณเวกเตอร์ ซึ่งแสดงทั้งความเร็วของวัตถุและทิศทางของการเคลื่อนที่ ดังนั้นความเร็วของวัตถุคงที่จึงต้องคงที่ทั้งขนาดและทิศทางด้วย

กฎข้อที่หนึ่งสามารถเขียนเป็นสมการคณิตสาสตร์ได้ เมื่อมวลเป็นค่าคงที่ที่ไม่เป็นศูนย์ คือ

𝐅=0d𝐯dt=0

ดังนั้น

  • วัตถุที่หยุดนิ่งจะหยุดนิ่งต่อไปเรื่อย ๆ เว้นแต่จะมีแรงภายนอกมากระทำ
  • วัตถุที่กำลังเคลื่อนที่จะไม่เปลี่ยนแปลงความเร็ว เว้นแต่จะมีแรงภายนอกมากระทำเช่นกัน

กฎข้อนี้นำมาซึ่งแนวคิดเกี่ยวกับ ความเฉื่อยของวัตถุ และแฝงคำจำกัดความของกรอบอ้างอิงเฉื่อย (inertia frames of reference) ไว้ ในทางปฏิบัติระบบอ้างอิงเฉื่อยคือระบบอ้างอิงที่อยู่นิ่งหรือเคลื่อนที่ด้วยความเร็วคงที่ (ไม่มีความเร่ง) เทียบกับดาวไกลโพ้น กรอบอ้างอิงเฉื่อยเป็นเงื่อนไขเพื่อให้กฎข้อที่สองเป็นจริง

การเคลื่อนที่แบบสม่ำเสมอ หมายถึงการที่วัตถุจะเคลื่อนที่อย่างเดิมไปจนกว่าจะมีแรงมากระทำ ถ้าหยุดนิ่งก็จะหยุดนิ่งต่อไป (แสดงให้เห็นโดยการดึงผ้าปูโต๊ะที่มีจานวางไว้ออกอย่างรวดเร็ว จานจะวางอยู่ที่เดิมไม่ติดกับผ้าไป) ถ้าวัตถุที่กำลังเคลื่อนที่ก็จะเคลื่อนที่ต่อไปโดยไม่หมุนหรือเปลี่ยนอัตราเร็วของมัน ซึ่งเห็นได้ชัดเจนในยานสำรวจอวกาศทีเคลื่อนที่อย่างต่อเนื่องไปในอวกาศ การเปลี่ยนแปลงการเคลื่อนที่จะขึ้นอยู่กับแนวโน้มของวัตถุที่จะคงสถานะการเคลื่อนที่ไว้ ในกรณีที่ไม่มีแรงสุทธิวัตถุมีแนวโน้มจะเคลื่อนที่ไปในแนวเส้นตรงต่อไปเรื่อย ๆ

นิวตันวางกฎการเคลื่อนที่ข้อแรกเพื่อกำหนดกรอบอ้างอิงสำหรับให้กฎอื่น ๆ สามารถใช้ได้ กฎของการเคลื่อนที่ข้อแรกตั้งเงื่อนไขของกรอบอ้างอิงอย่างน้อยหนึ่งกรอบที่เรียกว่า กรอบอ้างอิงเฉื่อยหรือกรอบอ้างอิงนิวโตเนียน ซึ่งเมื่อเทียบกับกรอบนี้แล้ว การเคลื่อนที่ของอนุภาคที่ไม่ขึ้นกับแรงเป็นเส้นตรงและมีความเร็วคงที่[11][16] กฎการเคลื่อนที่ข้อแรกของนิวตันมักถูกเรียกว่ากฎของความเฉื่อย ดังนั้นเงื่อนไขที่จำเป็นสำหรับการเคลื่อนที่สม่ำเสมอของอนุภาคเมื่อเทียบกับกรอบอ้างอิงเชิงเฉื่อยคือแรงสุทธิรวมที่กระทำเป็นศูนย์ ในแง่นี้กฎข้อแรกสามารถเรียบเรียงใหม่ได้ว่า:

แม่แบบ:Quote

ในภาษาไทย คือ

แม่แบบ:Quote

กฎข้อที่หนึ่งและสองของนิวตันจะใช้ได้เฉพาะในกรอบอ้างอิงเฉื่อยเท่านั้น กรอบอ้างอิงที่อยู่ในรูปแบบเดียวกันกับกรอบเฉื่อย เช่น ความเสมอภาคแบบกาลิเลียน หรือหลักการของสัมพัทธภาพแบบนิวโตเนียน[17]

กฎการเคลื่อนที่ข้อที่ 2

ไฟล์:Secondlaw.ogv กฎข้อที่สองระบุว่า อัตราการเปลี่ยนแปลงโมเมนตัมของวัตถุเป็นสัดส่วนโดยตรงกับแรงกระทำและการเปลี่ยนแปลงโมเมนตัมนี้เกิดขึ้นในทิศทางเดียวกับแรงที่มากระทำต่อวัตถุนั้น

𝐅=d𝐩dt=d(m𝐯)dt

เมื่อ 𝐅 คือ แรงลัพธ์ที่มากระทำต่อวัตถุ 𝐩คือโมเมนตัมของวัตถุ m คือ มวลของวัตถุ และ 𝐯 คือ ความเร็วของวัตถุ

กฎข้อที่สองสามารถระบุได้ในแง่ของความเร่งของวัตถุ เนื่องจากกฎข้อที่สองนี้ใช้ได้เฉพาะกับระบบที่มวลคงที่เท่านั้น[19][20][21] แม่แบบ:Math สามารถนำออกไปนอกตัวดำเนินการอนุพันธ์ได้โดยกฎของค่าคงตัวในอนุพันธ์ ดังนั้น

𝐅=md𝐯dt=m𝐚

เมื่อ 𝐚 คือ ความเร่งของวัตถุ ดังนั้น แรงลัพธ์จึงเป็นสัดส่วนโดยตรงกับความเร่งของวัตถุ กล่าวอีกนัยหนึ่งว่าถ้าวัตถุมีความเร่งแสดงว่ามีแรงกระทำต่อวัตถุอยู่ การประยุกต์ใช้สัญกรณ์นี้เป็นที่มาของ gc (Gc (วิศวกรรม))

กฎข้อนี้สอดคล้องกับกฎการเคลื่อนที่ข้อที่ 1 คือเมื่อแรงลัพธ์ที่กระทำต่อวัตถุเป็นศูนย์ โมเมนตัมของวัตถุจะมีค่าคงที่ ซึ่งความสัมพันธ์นี้หมายถึงการอนุรักษ์โมเมนตัม และเมื่อโมเมนตัมเปลี่ยนทิศทาง แม้ว่าขนาดของมันจะไม่มีการเปลี่ยนแปลง อัตราการเปลี่ยนแปลงต่อเวลาของโมเมนตัมก็จะไม่เป็นศูนย์ เช่นในกรณีที่เป็นการเคลื่อนที่แบบวงกลมสม่ำเสมอ

มวลที่ได้หรือสูญหายโดยระบบจะทำให้เกิดการเปลี่ยนแปลงโมเมนตัมที่ไม่ใช่ผลของแรงภายนอก สมการอนุพันธ์จึงเป็นสิ่งจำเป็นสำหรับระบบมวลแปรผัน (ดูด้านล่าง)

กฎข้อที่สองของนิวตันเป็นค่าประมาณ ซึ่งจะคลาดเคลื่อนมากขึ้นเมื่อวัตถุมีความเร็วสูงขึ้น โดยเฉพาะความเร็วใกล้เคียงความเร็วแสง ซึ่งเป็นผลกระทบเชิงสัมพัทธ์

แรงดล

แรงดล 𝐉 เกิดขึ้นเมื่อแรง 𝐅 กระทำในช่วงเวลา Δt ได้จาก[22][23]

𝐉=Δt𝐅dt

เนื่องจากแรงเป็นเปลี่ยนแปลงตามเวลา โมเมนตัมจึงเป็น

𝐉=Δ𝐩=mΔ𝐯

ความสัมพันธ์ระหว่างแรงดลและโมเมนตัมนี้ใกล้เคียงกับนิยามของนิวตันในกฎข้อที่สอง[24]

แรงดลเป็นแนวคิดที่ใช้บ่อยในการวิเคราะห์การชนและผลกระทบจากการชน[25]

ระบบมวลแปรผัน

แม่แบบ:บทความหลัก ระบบมวลแปรผัน เช่น เชื้อเพลิงของจรวจที่ถูกเผาไหม้และการปล่อนก๊าซที่ใช่แล้ว ซึ่งไม่ได้อยู่ในระบบปิดจึงทำให้มวลเป็นฟังก์ชันของเวลาในกฎข้อที่สอง[20] นั้นคือสมการต่อไปนี้ผิด[21]

𝐅net=ddt[m(t)𝐯(t)]=m(t)d𝐯dt+𝐯(t)dmdt(wrong)

เหตุที่สมการนี้ผิด สังเกตได้จากการที่สมการนี้ไม่เป็นไปตามความเสมอภาคแบบกาลิเลียน วัตถุมวลแปรผันที่มี F = 0 ในกรอบอ้างอิงหนึ่ง จะเห็นได้ว่ามี F ≠ 0 ในกรอบอ้างอิงอื่น[19] สมการที่ถูกต้องของการเคลื่อนที่ของวัตถุที่มีมวล m เปลี่ยนแปลงไปตามเวลาโดยการปล่อยออกไปหรือรับมวลเข้ามา จะได้จากการใช้กฎข้อที่สองกับระบบมวลคงที่ซึ่งประกอบด้วยวัตถุและมวลที่รับหรือปล่อยออกมา ผลลัพธ์คือ [19]

𝐅+𝐮dmdt=md𝐯dt

โดยที่ 𝐮 คือความเร็วของมวลที่ถูกปล่อยออกไปหรือรับเข้ามาเมื่อเทียบกับวัตถุ จากสมการนี้เราจะได้สมการของการเคลื่อนที่ของระบบมวลแปรผัน ตัวอย่างเช่น สมการจรวดซีออลคอฟสกี ภายใต้เงื่อนไขบางประการ ปริมาณ 𝐮dmdt ทางซ้ายของสมการซึ่งแสดงการถ่ายโอนของโมเมนตัม หมายถึงแรง (แรงที่กระทำต่อวัตถุโดยมวลที่เปลี่ยนแปลงเช่นไอเสียจรวด) และรวมอยู่ในปริมาณ 𝐅

กฎการเคลื่อนที่ข้อที่ 3

ภาพประกอบกฎข้อที่สามของนิวตันซึ่งนักสเก็ตสองคนผลักดันกันและกัน ผู้เล่นสเกตบอร์ดคนแรกด้านซ้ายจะมีแรงตั้งฉาก 𝐍12 ต่อผู้เล่นสเกตบอร์ดคนที่สอง ในทิศไปทางขวา และผู้เล่นสเกตบอร์ดคนที่สอง มีแรงตั้งฉาก 𝐍21ต่อผู้เล่นสเกตบอร์ดคนแรก ขนาดของแรงทั้งสองมีค่าเท่ากัน แต่มีทิศทางตรงกันข้าม

ไฟล์:Thirdlaw.ogv กฎข้อที่สามระบุว่า แรงทั้งหมดระหว่างสองวัตถุมีขนาดเท่ากันและทิศทางตรงกันข้าม ถ้าวัตถุ A ออกแรงกระทำ 𝐅A กระทำต่อวัตถุ B แล้ว B จะออกแรง 𝐅B กระทำต่อวัตถุ A พร้อม ๆ กัน และแรงทั้งสองมีค่าเท่ากันและมีทิศทางตรงกันข้าม 𝐅A=𝐅B[27] กฎข้อที่สามครอบคลุมแรงทั้งหมดที่มีอันตรกิริยาระหว่างวัตถุที่แตกต่างกัน[28][29] หรือบริเวณที่แตกต่างกันของวัตถุ และชี้ว่าไม่มีแรงที่ไม่ได้เกิดขึ้นพร้อมกันกับแรงที่มีขนาดเท่ากันและทิศตรงกันข้าม ในบางสถานการณ์ขนาดและทิศทางของแรงจะถูกกำหนดโดยหนึ่งในสองวัตถุกล่าวคือ แรงที่วัตถุ A กระทำต่อวัตถุ B เรียกว่า "การกระทำ" และแรงที่วัตถุ B กระทำต่อวัตถุ A เรียกว่า "ปฏิกิริยา" บางครั้งเราเรียกกฎข้อนี้ว่า กฎของแรงกิริยา - ปฏิกิริยา ซึ่ง 𝐅A เรียกว่า "แรงกิริยา" และ 𝐅B เรียกว่า "แรงปฏิกิริยา" ในสถานการณ์อื่น ๆ ขนาดและทิศทางของแรงกำหนดร่วมกันโดยทั้งสองวัตถุและไม่จำเป็นต้องระบุว่าแรงใดเป็น "แรงกิริยา" และอีกนัยหนึ่งเป็น "แรงปฏิกิริยา" แรงกิริยาและแรงปฏิกิริยาเกิดขึ้นพร้อม ๆ กันและไม่สำคัญว่าจะเรียกว่าแรงกิริยาทำอย่างไรและเรียกว่าแรงปฏิกิริยา แรงทั้งสองเป็นส่วนหนึ่งของปฏิสัมพันธ์เดี่ยวและไม่มีแรงอื่นอยู่ด้วย[27]

แรงสองแรงในกฎข้อที่สามของนิวตัน เป็นแรงประเภทเดียวกัน (เช่นถ้าถนนมีแรงเสียดทานมีทิศไปข้างหน้าบนยางรถยนต์ ย่อมมีแรงเสียดทานที่ยางรถยนต์ทำกลับไปบนถนน)

ตัวอย่างของกฎข้อที่สามของนิวตันจะเห็นได้จากสถานการณ์ของคนที่กำลังเดิน: เขาผลักดันกับพื้นและพื้นผลักดันต่อเขา ในทำนองเดียวกันยางของรถยนต์ดันกับถนนในขณะที่ถนนผลักดันกลับไปที่ยาง ในการว่ายน้ำคนจะมีปฏิสัมพันธ์กับน้ำและผลักดันน้ำให้ถอยหลังขณะที่น้ำดันคนไปข้างหน้าทั้งคนและน้ำโดยดันกันและกัน แรงปฏิกิริยาแสดงการเคลื่อนที่ในตัวอย่างเหล่านี้ แรงในตัวอย่างเหล่านี้ขึ้นอยู่กับแรงเสียดทาน ตัวอย่างเช่นคนหรือรถบนน้ำแข็งอาจไม่สามารถออกแรงกระทำเพื่อสร้างแรงปฏิกิริยาได้[30]

ประวัติ

กฎการเคลื่อนที่ข้อที่ 1

จากหนังสือ Principia ต้นฉบับภาษาละติน ของนิวตัน แม่แบบ:Cquote แปลเป็นภาษาไทยได้ว่า แม่แบบ:Cquote อาริสโตเติล นักปราชญ์กรีกโบราณ มีมุมมองที่ว่าวัตถุทั้งหลายมีที่อยู่ของมันตามธรรมชาติในจักรวาล คือวัตถุที่หนัก (เช่น หิน) จะอยู่นิ่งบนพื้นโลก และวัตถุที่เบาเหมือนควันจะลอยนิ่งอยู่บนท้องฟ้า และดาวฤกษ์จะอยู่บนสวรรค์ เขาคิดว่าวัตถุอยู่ในสภาพธรรมชาติของมันเมื่อมันอยู่นิ่ง และสำหรับวัตถุที่กำลังเคลื่อนที่ในแนวเส้นตรงด้วยความเร็วคงที่ จำเป็นต้องมีแรงภายนอกเพื่อทำให้มันเคลื่อนที่หรือหยุดเคลื่อนที่ ต่อมา กาลิเลโอ กาลิเลอี ตระหนักว่าแรงเป็นสิ่งจำเป็นในการเปลี่ยนความเร็วของวัตถุ เช่น ความเร่ง แต่ไม่จำเป็นต้องใช้แรงเพื่อรักษาความเร็วของมัน ในอีกนัยหนึ่งกาลิเลโอกล่าวตรงข้ามกับอาริสโตเติลว่าในกรณีที่ไม่มีแรงวัตถุเคลื่อนที่จะเคลื่อนที่ต่อไป (การที่วัตถุต่อต้านการเปลี่ยนแปลงการเคลื่อนที่คือสิ่งที่โยฮันเนส เคปเลอร์เรียกว่าความเฉื่อย) แนวคิดนี้ได้รับการกลั่นกรองโดยนิวตัน ซึ่งทำให้มันกลายเป็นกฎข้อแรกของเขาหรือที่เรียกว่า "กฎของความเฉื่อย" หมายความว่าถ้าไม่มีแรง จะไม่มีความเร่ง และด้วยเหตุนี้วัตถุจะรักษาความเร็วไว้ได้ เนื่องจากกฎข้อแรกของนิวตัน เป็นการปรับปรุงกฎของความเฉื่อยที่กาลิเลโอ ได้อธิบายไว้ก่อนแล้วดังนั้นนิวตันจึงให้เครดิตกับกาลิเลโอแม่แบบ:Citation needed

กฎของความเฉื่อยนี้เกิดขึ้นในความคิดของนักปรัชญาและนักวิทยาศาสตร์หลายคนรวมถึง โทมัส ฮอบส์ ซึ่งกล่าวไว้ในหนังสือเลวีอาธาน ด้วย[31] เรอเน เดการ์ต นักปรัชญาและนักคณิตศาสตร์ แห่งศตวรรษที่ 17 ได้กำหนดกฎไว้เช่นเดียวกัน แม้ว่าเขาจะไม่ได้ทำการทดลองใด ๆ เพื่อยืนยัน[32][33]

กฎการเคลื่อนที่ข้อที่ 2

จากหนังสือ Principia ต้นฉบับภาษาละติน ของนิวตัน แม่แบบ:Cquote แปลเป็นภาษาไทยได้ว่า แม่แบบ:Cquote เทียบเท่ากับคำศัพท์ปัจจุบันว่า[34] แม่แบบ:Quote

นี่อาจเป็นสูตรสำหรับโมเมนตัม F=p เมื่อ p เป็นอนุพันธ์ของโมเมนตัมเทียบกับเวลา สมการนี้ถูกจัดแสดงไว้ในห้องสมุดเรน เคมบริดจ์ ของ วิทยาลัยทรินิตี มหาวิทยาลัยเคมบริดจ์ ในครอบแก้วซึ่งมีต้นฉบับของนิวตันเปิดอยู่ในหน้าที่เกี่ยวข้อง

ฉบับแปลของ Andrew Motte ในปี 1729 ซึ่งแปลจากฉบับภาษาละตินของนิวตัน มีการให้คำนิยามของกฎข้อที่สองไว้ว่าแม่แบบ:Quote แปลเป็นภาษาไทยว่า แม่แบบ:Quote ลักษณะของการใช้คำศัพท์และความเข้าใจที่นิวตันมีต่อกฎข้อที่สอง รวมถึงความตั้งใจที่จะให้ผู้อื่นตีความกฎ เป็นที่ถกเถียงกันอย่างกว้างขวางโดยนักประวัติศาสตร์วิทยาศาสตร์ พร้อมกับความสัมพันธ์ระหว่างสูตรของนิวตันกับสูตรสมัยใหม่[35]

กฎการเคลื่อนที่ข้อที่ 3

แม่แบบ:Cquoteแปลเป็นภาษาไทยได้ว่าแม่แบบ:Cquoteส่วนขยายความของนิวตันต่อกฎนี้กล่าวว่า:

แม่แบบ:Quote

แปลเป็นภาษาไทยได้ว่า

แม่แบบ:Quote

โดยที่คำว่า การเคลื่อนที่ เป็นชื่อที่นิวตันใช้เรียกโมเมนตัม จึงเป็นสาเหตุที่นิวตันระมัดระวังในการแยกแยะระหว่างการเคลื่อนที่และความเร็ว

นิวตันใช้กฎข้อที่สามในการพิสูจน์กฎอนุรักษ์โมเมนตัม [36] แต่จากมุมมองที่ลึกกว่าในปัจจุบัน กฎอนุรักษ์โมเมนตัมเป็นแนวคิดที่เป็นพื้นฐานมากกว่า (โดยเป็นผลจากทฤษฎีบทของเนอเทอร์ และ ความเสมอภาคแบบกาลิเลียน) และเป็นจริงในกรณีที่กฎข้อที่สามไม่เป็นจริง เช่น ในกรณีที่สนามพลังสามารถนำพาโมเมนตัมได้เหมือนอนุภาค และในกลศาสตร์ควอนตัม

ความสำคัญและช่วงของความถูกต้อง

กฎของนิวตันถูกตรวจสอบได้โดยการทดลองมาเป็นเวลากว่า 200 ปี ว่าใช้ได้อย่างยอดเยี่ยมสำหรับช่วงขนาดและความเร็วของชีวิตประจำวัน กฎเหล่านี้ร่วมกับกฎความโน้มถ่วงสากลและแคลคูลัส นำไปสู่คำอธิบายปรากฏการณ์ทางฟิสิกส์ในเชิงปริมาณอย่างหลากหลายเป็นครั้งแรกในประวัติศาสตร์ของวิชาวิทยาศาสตร์

กฎทั้งสามข้อนี้เป็นการประมาณที่ดีมากสำหรับสภาพแวดล้อมในชีวิตประจำวัน อย่างไรก็ตามกฎของนิวตัน (รวมถึงความโน้มถ่วงสากลและพลศาสตร์ไฟฟ้าดั้งเดิม) ไม่สามารถใช้ได้ในบางสถานการณ์ โดยเฉพาะในช่วงขนาดที่เล็กมาก ๆ ช่วงความเร็วที่สูงมาก ๆ (ซึ่งในสัมพัทธภาพพิเศษจะต้องเพิ่มตัวคูณลอเรนซ์ในสูตรของโมเมนตัม มวลนิ่ง และความเร็ว) หรือสนามโน้มถ่วงกำลังสูงมาก ๆ ดังนั้นกฎเหล่านี้จึงไม่สามารถอธิบายปรากฏการณ์เช่นการนำไฟฟ้าของสารกึ่งตัวนำ สมบัติทางทัศนศาสตร์ของสสาร ความผิดพลาดของระบบจีพีเอสที่ไม่คำนึงถึงสัมพัทธภาพ และสภาพนำยวดยิ่ง ซึ่งการอธิบายปรากฏการณ์เหล่านี้ต้องการทฤษฎีที่ซับซ้อนขึ้น เช่น ทฤษฎีสัมพัทธภาพทั่วไป ทฤษฎีสนามควอนตัม เป็นต้น

ในกลศาสตร์ควอนตัม แนวคิดอย่างแรง โมเมนตัม และตำแหน่ง จะถูกนิยามโดยใช้ตัวดำเนินการเชิงเส้นซึ่งกระทำกับสถานะควอนตัม: ในช่วงความเร็วต่ำ ๆ กฎของนิวตันจะตรงกับตัวดำเนินการเหล่านี้สำหรับวัตถุทั่วไป แต่เมื่อความเร็วใกล้เคียงความเร็วแสงจะไม่ตรง โดยกฎข้อที่สองจะเป็นจริงเฉพาะในรูป F = dp/dt เมื่อ F และ p เป็นเวกเตอร์สี่มิติ

ความสัมพันธ์กับกฎการอนุรักษ์

ในฟิสิกส์ปัจจุบัน กฎอนุรักษ์โมเมนตัม พลังงาน และโมเมนตัมเชิงมุม มีความถูกต้องอย่างกว้างขวางกว่ากฎของนิวตัน เนื่องจากครอบคลุมทั้งแสงและสสาร และทั้งกลศาสตร์ดั้งเดิมกับกลศาสตร์สมัยใหม่

เนื่องจากแรงเป็นอนุพันธ์เทียบเวลาของโมเมนตัม แนวคิดของแรงจึงเป็นผลมาจากกฎอนุรักษ์โมเมนตัม และไม่จำเป็นต่อทฤษฎีพื้นฐาน (กลศาสตร์ควอนตัม พลศาสตร์ไฟฟ้าควอนตัม สัมพัทธภาพทั่วไป ฯลฯ) แบบจำลองมาตรฐานอธิบายแรงพื้นฐานสามแรงที่เรียกว่าแรงเกจ ว่ากำเนิดมาจากการแลกเปลี่ยนอนุภาคเสมือน ส่วนแรงอื่น ๆ เช่นแรงโน้มถ่วงและแรงดันดีเจเนอเรซีของเฟอร์มิออนก็มาจากการอนุรักษ์โมเมนตัม โดยการอนุรักษ์โมเมนตัมสี่มิติในการเคลื่อนที่เฉื่อยผ่านกาล-อวกาศที่โค้งงอ นำไปสู่สิ่งที่เรียกว่าแรงโน้มถ่วงในสัมพัทธภาพทั่วไป และการใช้อนุพันธ์เทียบตำแหน่ง (ซึ่งตรงกับตัวดำเนินการโมเมนตัมในกลศาสตร์ควอนตัม) กับฟังก์ชันคลื่นของคู่เฟอร์มิออนก็นำไปสู่การขยับตัวของจุดสูงสุดแยกออกจากกัน ซึ่งสังเกตได้เป็นการ"ผลักกัน"ของเฟอร์มิออน

นิวตันตั้งกฎข้อสามไว้ภายใต้มุมมองที่เชื่อว่าการกระทำระหว่างอนุภาคเกิดในทันที ซึ่งในวิชาฟิสิกส์ปัจจุบันไม่มีการกระทำที่ทันทีทันใดเช่นนี้ เว้นแต่ผลกระทบบางประการจากควอนตัมเอนแทงเกิลเมนต์ (ตามทฤษฎีบทของเบลล์) อย่างไรก็ตามแนวคิดของการกระทำอย่างทันทีนี้ก็ยังใกล้เคียงความจริงมากพอที่จะใช้ประโยชน์ในวิศวกรรมศาสตร์

การค้นพบกฎข้อที่สองของอุณหพลศาสตร์โดยคาร์โนในศตวรรษที่ 19 แสดงว่ามีปริมาณทางฟิสิกส์ที่ไม่คงที่ในเวลา แสดงว่าแนวคิด "สถานะคงตัว" ที่เป็นไปตามกฎของนิวตันและกฎอนุรักษ์เท่านั้นขาดการคำนึงถึงเอนโทรปี

ดูเพิ่ม

อ้างอิง

แม่แบบ:รายการอ้างอิง

อ่านเพิ่ม

แม่แบบ:Portal bar แม่แบบ:Authority control แม่แบบ:โครงฟิสิกส์

  1. For explanations of Newton's laws of motion by Newton in the early 18th century, by the physicist William Thomson (Lord Kelvin) in the mid-19th century, and by a modern text of the early 21st century, see:-
  2. แม่แบบ:Cite book
  3. แม่แบบ:Cite book
  4. See the Principia on line at Andrew Motte Translation
  5. Andrew Motte translation of Newton's Principia (1687) Axioms or Laws of Motion
  6. แม่แบบ:Cite book
  7. แม่แบบ:Cite book
  8. แม่แบบ:Cite book
  9. [...]while Newton had used the word 'body' vaguely and in at least three different meanings, Euler realized that the statements of Newton are generally correct only when applied to masses concentrated at isolated points;แม่แบบ:Cite book
  10. แม่แบบ:Cite book
  11. 11.0 11.1 แม่แบบ:Cite journal
  12. แม่แบบ:Cite book
  13. In making a modern adjustment of the second law for (some of) the effects of relativity, m would be treated as the relativistic mass, producing the relativistic expression for momentum, and the third law might be modified if possible to allow for the finite signal propagation speed between distant interacting particles.
  14. แม่แบบ:Cite AV media
  15. แม่แบบ:Citation
  16. แม่แบบ:Cite book
  17. แม่แบบ:Cite book
  18. Lewin, Newton’s First, Second, and Third Laws แม่แบบ:Webarchive, Lecture 6. (6:53–11:06)
  19. 19.0 19.1 19.2 แม่แบบ:Cite journal "We may conclude emphasizing that Newton's second law is valid for constant mass only. When the mass varies due to accretion or ablation, [an alternate equation explicitly accounting for the changing mass] should be used."
  20. 20.0 20.1 แม่แบบ:Cite book [Emphasis as in the original]
  21. 21.0 21.1 แม่แบบ:Cite book
  22. Hannah, J, Hillier, M J, Applied Mechanics, p221, Pitman Paperbacks, 1971
  23. แม่แบบ:Cite book
  24. แม่แบบ:Cite book
  25. แม่แบบ:Cite book
  26. Lewin, Newton’s First, Second, and Third Laws แม่แบบ:Webarchive, Lecture 6. (14:11–16:00)
  27. 27.0 27.1 แม่แบบ:Cite book
  28. แม่แบบ:Cite journal
  29. แม่แบบ:Cite book
  30. Hewitt (2006), p. 75
  31. Thomas Hobbes wrote in Leviathan: แม่แบบ:Quote
  32. แม่แบบ:Cite book
  33. แม่แบบ:Cite book
  34. According to Maxwell in Matter and Motion, Newton meant by motion "the quantity of matter moved as well as the rate at which it travels" and by impressed force he meant "the time during which the force acts as well as the intensity of the force". See Harman and Shapiro, cited below.
  35. See for example (1) I Bernard Cohen, "Newton's Second Law and the Concept of Force in the Principia", in "The Annus Mirabilis of Sir Isaac Newton 1666–1966" (Cambridge, Massachusetts: The MIT Press, 1967), pages 143–185; (2) Stuart Pierson, "'Corpore cadente. . .': Historians Discuss Newton’s Second Law", Perspectives on Science, 1 (1993), pages 627–658; and (3) Bruce Pourciau, "Newton's Interpretation of Newton's Second Law", Archive for History of Exact Sciences, vol.60 (2006), pages 157–207; also an online discussion by G E Smith, in 5. Newton's Laws of Motion, s.5 of "Newton's Philosophiae Naturalis Principia Mathematica" in (online) Stanford Encyclopedia of Philosophy, 2007.
  36. Newton, Principia, Corollary III to the laws of motion