เกรเดียนต์
ในแคลคูลัสเวกเตอร์ เกรเดียนต์ (แม่แบบ:Langx) คือการดำเนินการกับฟังก์ชันหลายตัวแปร ซึ่งหาอนุพันธ์ได้ซึ่งมีค่าเป็นสเกลาร์ ผลลัพธ์ที่ได้คือสนามเวกเตอร์ ที่ค่าที่แต่ละจุดจะชี้ไปในทิศทางที่ มีค่ามากขึ้นที่สุด[1] และขนาดของเวกเตอร์เท่ากับอัตราการเพิ่มขึ้นในทิศทางนั้น ๆ เรียกสนามเวกเตอร์นี้ว่า เกรเดียนต์ของ สัญลักษณ์ เรียกว่าสัญลักษณ์นาบลา (nabla) หรือ เดล (del)
เนื่องจากเกรเดียนต์ระบุทิศทางที่ฟังก์ชันมีค่าเพิ่มขึ้นมากที่สุด และทิศทางตรงกันข้ามของเกรเดียนต์ฟังก์ชันจะมีค่าน้อยที่สุด เกรเดียนต์จึงมีความสำคัญในวิชาการหาค่าเหมาะที่สุด เพื่อหาค่าที่น้อยที่สุดของฟังก์ชัน ด้วยขั้นตอนวิธีการเคลื่อนลงตามความชัน (gradient descent)
แนวคิดจูงใจของเกรเดียนต์
พิจารณาห้องที่อุณหภูมิภายในกำหนดด้วยฟังก์ชันค่าสเกลาร์ นั่นคือที่จุด อุณหภูมิที่ตำแหน่งนั้นคือ และเป็นอิสระจากเวลา
เกรเดียนต์ของ ที่จุด จะบอกทิศทางที่อุณหภูมิเพิ่มขึ้นเร็วที่สุดเมื่อเดินทางออกจากจุด และขนาดของเกรเดียนต์จะระบุอัตราเร็วที่อุณหภูมิเพิ่มขึ้นในทิศทางนั้น
พิจารณาพื้นผิวที่ความสูงจากระดับน้ำทะเลที่จุด กำหนดโดยฟังก์ชัน เกรเดียนต์ของ ที่จุด จะเป็นเวกเตอร์ที่ชี้บอกทิศทางที่ชันมากที่สุดจากจุดนั้น และความชันจะเท่ากับขนาดของเวกเตอร์เกรเดียนต์
นอกจากนี้ เกรเดียนต์ยังสามารถใช้วัดอัตราการเปลี่ยนแปลงของฟังก์ชันค่าสเกลาร์ในทิศทางอื่นนอกเหนือไปจากทิศทางของเกรเดียนต์เอง โดยการหาผลคูณจุด สมมติว่าความชันสูงสุดที่จุด ๆ หนึ่งบนเนินเขาเท่ากับ 40% ถนนขึ้นเนินที่ทำมุมอื่น ๆ ย่อมจะมีความชันน้อยกว่า เราสามารถหาความชันได้โดยหาผลคูณจุดระหว่างเกรเดียนต์ที่จุดที่สนใจ และเวกเตอร์หน่วยที่ชี้ไปตามทิศทางของถนน
โดยทั่วไปกว่านั้น ถ้าฟังก์ชัน ที่ระบุความสูงของเนิน เป็นฟังก์ชันหาอนุพันธ์ได้ แล้วเกรเดียนต์ของ คูณสเกลาร์กับเวกเตอร์หน่วยจะเท่ากับความชันของเนินในทิศทางนั้น หรือก็คืออนุพันธ์ระบุทิศทางของ ในทิศทางของเวกเตอร์หน่วยนั้น
สัญลักษณ์ที่ใช้
เกรเดียนต์ของฟังก์ชัน ที่จุด นิยมเขียนแทนด้วย แต่อาจจะมีสัญลักษณ์อื่น ๆ เช่น
- : เพื่อเจาะจงความเป็นเวกเตอร์ของเกรเดียนต์
- and : โดยใช้สัญกรณ์ของไอน์ชไตน์ (Einstein notation) โดยดรรชนีที่ซ้ำให้ถือว่าถูกบวกอยู่ (แม่แบบ:Math)
นิยาม
เกรเดียนต์ ของฟังก์ชันสเกลาร์ เขียนแทนด้วย หรือ นิยามให้เป็นสนามเวกเตอร์ซึ่งมีเพียงแบบเดียวที่ผลคูณจุดกับเวกเตอร์ ที่จุด จะเท่ากับอนุพันธ์ระบุทิศทางของ ไปตาม [2] นั่นคือ
เมื่อพจน์ทางขวามือคืออนุพันธ์ระบุทิศทางของฟังก์ชัน ในทางรูปนัยเราจะกล่าวว่าการหาอนุพันธ์เป็น ดูอัล ของเกรเดียนต์ มีวิธีการหาค่าของเกรเดียนต์หลายวิธีซึ่งเสนอไว้ด้านล่าง
สัญลักษณ์ เรียกว่าตัวดำเนินการเชิงอนุพันธ์สำหรับเวกเตอร์
ขนาดและทิศทางของเกรเดียนต์ไม่ขึ้นกับระบบพิกัดที่ใช้[3][4]
ระบบพิกัดคาร์ทีเซียน
ในระบบพิกัดคาร์ทีเซียนสามมิติพร้อมกับเมตริกแบบยูคลิด เกรเดียนต์ถ้ามีค่าจะเป็นไปตามสมการ
เมื่อ แม่แบบ:Math, แม่แบบ:Math, แม่แบบ:Math เป็นเวกเตอร์หนึ่งหน่วยมาตรฐานในทิศทางของระบบพิกัด แม่แบบ:Math, แม่แบบ:Math และ แม่แบบ:Math ตามลำดับ ตัวอย่างเช่น เกรเดียนต์ของฟังก์ชัน คือ หรือเขียนแทนด้วย
ในบางการใช้งานนิยมเขียนเกรเดียนต์เป็นเวกเตอร์แถวหรือเวกเตอร์หลัก