อินเตอร์เซกชัน

จาก testwiki
รุ่นแก้ไขเมื่อ 11:45, 5 มกราคม 2568 โดย imported>อมฤตาลัย (รูปแบบ)
(ต่าง) ←รุ่นแก้ไขก่อนหน้า | รุ่นแก้ไขล่าสุด (ต่าง) | รุ่นแก้ไขถัดไป→ (ต่าง)
ไปยังการนำทาง ไปยังการค้นหา

อินเตอร์เซกชัน (แม่แบบ:Langx) หรือ ส่วนร่วม คือการดำเนินการของเซต เป็นการสร้างเซตใหม่ซึ่งเป็นผลจากการหาสมาชิกทั้งหมดที่เหมือนกันในเซตต้นแบบ เขียนแทนด้วยสัญลักษณ์ (คล้ายอักษรตัวใหญ่ U กลับหัว)

นิยาม

สมมติให้วงกลมสองวงเป็นเซต A กับ B พื้นที่สีม่วงคือการอินเตอร์เซกชันของเซตทั้งสอง

สมมติว่าเอกภพสัมพัทธ์ U ได้นิยามแล้ว กำหนดให้เซตสองเซต A และ B เป็นเซตย่อยของ U การอินเตอร์เซกชันจะให้ผลเป็นเซตใหม่ที่มีสมาชิกทั้งหมดที่ปรากฏอยู่ใน A และ B โดยไม่มีสมาชิกอื่นนอกเหนือจากนี้ นั่นคือ

AB={x𝐔|xAxB}

ตัวอย่างเช่น กรณีที่มีสมาชิกบางส่วนเหมือนกัน ดังนั้นผลของการอินเตอร์เซกชันจึงเป็นเซตที่ประกอบด้วยสมาชิกที่เหมือนกันเหล่านั้น

A={1,2,3}B={2,3,4}AB={2,3}

หากทั้งสองเซตมีสมาชิกที่แตกต่างกัน คือไม่มีสมาชิกตัวใดเหมือนกันเลย ผลของการอินเตอร์เซกชันจะได้เซตว่าง เราจะกล่าวว่าทั้งสองเซตนั้น ไม่มีส่วนร่วม (disjoint) ต่อกัน

A={1,2,3,4}B={5,6,7,8}AB=

สมบัติ

อินเตอร์เซกชันมีสมบัติต่าง ๆ ทางพีชคณิตดังต่อไปนี้

รูปแบบ

อินเตอร์เซกชันไม่จำกัดทั่วไป

หากเราพิจารณาแนวคิดว่าอินเตอร์เซกชันกระทำบนกลุ่มของเซต ถ้าให้ M คือเซตที่มีสมาชิกเป็นกลุ่มของเซตเหล่านั้น (เซตของเซต) และไม่เป็นเซตว่าง x จะเป็นสมาชิกของการอินเตอร์เซกชันของ M ก็ต่อเมื่อ ทุก ๆ เซต A ซึ่งเป็นสมาชิกของ M และ x ก็เป็นสมาชิกของ A เขียนแทนด้วย 𝐌 หรือ A𝐌A ดังนี้

x𝐌A𝐌, xA

การอินเตอร์เซกชันของ M ในลักษณะนี้ไม่สำคัญว่า M จะมีจำนวนสมาชิก (จำนวนเซต) มากเท่าใด

สัญกรณ์ iIAi หมายถึงการอินเตอร์เซกชันของกลุ่มเซต Ai ทั้งหมด โดยที่ i เป็นสมาชิกของเซตดัชนี I ซึ่งเป็นสัญกรณ์แบบเดียวกับการเขียนอนุกรม สำหรับ อินเตอร์เซกชันไม่จำกัด (หรืออินเตอร์เซกชันอนันต์) เซตดัชนี I จะเป็นเซตไม่จำกัด เช่นจำนวนธรรมชาติ สามารถเขียนได้ดังนี้

i=1Ai=A1A2A3

อินเตอร์เซกชันไม่จำกัดซึ่งกลุ่มของเซตนั้นว่าง

ในหัวข้อก่อนหน้านี้ได้ยกเว้นไว้ในกรณีที่ M เป็นเซตว่าง ซึ่งจะได้อธิบายเหตุผลต่อไป ถ้าให้อินเตอร์เซกชันของกลุ่มของเซต M ได้ถูกนิยามไว้แล้วดังนี้

𝐌={x:xA for all A𝐌}

ในกรณีที่ M เป็นเซตว่าง นั่นหมายความว่าไม่มีเซต A ใด ๆ อยู่ใน M เลย จึงทำให้เกิดคำถามขึ้นว่า "จะมี x ค่าไหนที่ตรงตามเงื่อนไขที่ระบุบ้าง" คำตอบจึงดูเหมือนว่าเป็น "ทุกค่าของ x ใด ๆ ก็ได้" เพราะว่าเมื่อ M เป็นเซตว่าง เงื่อนไขข้างต้นเป็นตัวอย่างหนึ่งของความจริงว่างเปล่า (vacuous truth) ซึ่งจะเป็นจริงเสมอ ดังนั้นการอินเตอร์เซกชันเช่นนี้จึงควรมีคำตอบเป็นเอกภพสัมพัทธ์ ซึ่งไม่มีในทฤษฎีเซตมาตรฐาน (ZFC)

การแก้ปัญหานี้คือการยอมรับว่าเซตทุกเซตเป็นเซตย่อยของเอกภพสัมพัทธ์ U แล้วปรับแต่งการนิยามเพื่อให้สามารถใช้กับ M ที่เป็นเซตว่าง

𝐌={x𝐔:xA for all A𝐌}

แล้วคำตอบของการอินเตอร์เซกชันจึงจะเป็นเอกภพสัมพัทธ์ U

อ้างอิง

  • วัชรี กาญจน์กีรติ, พีชคณิตนามธรรม. กรุงเทพฯ : สำนักพิมพ์แห่งจุฬาลงกรณ์มหาวิทยาลัย, 2551. ISBN 978-974-03-2114-9

ดูเพิ่ม

แหล่งข้อมูลอื่น

แม่แบบ:คอมมอนส์-หมวดหมู่