สมบัติการเปลี่ยนหมู่

จาก testwiki
รุ่นแก้ไขเมื่อ 10:21, 17 พฤศจิกายน 2567 โดย imported>JasperBot (แทนที่ {lang-??} ด้วย {langx|??})
(ต่าง) ←รุ่นแก้ไขก่อนหน้า | รุ่นแก้ไขล่าสุด (ต่าง) | รุ่นแก้ไขถัดไป→ (ต่าง)
ไปยังการนำทาง ไปยังการค้นหา

ในคณิตศาสตร์ สมบัติการเปลี่ยนหมู่ (แม่แบบ:Langx) เป็นสมบัติหนึ่งที่สามารถมีได้ของการดำเนินการทวิภาค ซึ่งนิพจน์ที่มีตัวดำเนินการเดียวกันตั้งแต่สองตัวขึ้นไป การดำเนินการสามารถกระทำได้โดยไม่สำคัญว่าลำดับของตัวถูกดำเนินการจะเป็นอย่างไร นั่นหมายความว่า การใส่วงเล็บเพื่อบังคับลำดับการคำนวณในนิพจน์ จะไม่ส่งผลต่อผลลัพธ์สุดท้าย ตัวอย่างเช่น

(5 + 2) + 1 = 5 + (2 + 1) = 8

นิพจน์ข้างซ้ายจะบวก 5 กับ 2 ก่อนแล้วค่อยบวก 1 ส่วนนิพจน์ข้างขวาจะบวก 2 กับ 1 ก่อนแล้วค่อยบวก 5 ไม่ว่าลำดับของวงเล็บจะเป็นอย่างไร ผลบวกของนิพจน์ก็เท่ากับ 8 ไม่เปลี่ยนแปลง และเนื่องจากสมบัตินี้เป็นจริงในการบวกของจำนวนจริงใด ๆ เรากล่าวว่า การบวกของจำนวนจริงเป็นการดำเนินการที่ เปลี่ยนหมู่ได้ (associative)

ไม่ควรสับสนระหว่างสมบัติการเปลี่ยนหมู่กับสมบัติการสลับที่ สมบัติการสลับที่เป็นการเปลี่ยนลำดับของตัวถูกดำเนินการในนิพจน์ ในขณะที่สมบัติการเปลี่ยนหมู่ไม่ได้สลับตัวถูกดำเนินการเหล่านั้น เพียงแค่เปลี่ยนลำดับการคำนวณ เช่นตัวอย่างต่อไปนี้

(5 + 2) + 1 = (2 + 5) + 1

ไม่ใช่ตัวอย่างของสมบัติการเปลี่ยนหมู่ เพราะว่า 2 กับ 5 สลับที่กัน

การดำเนินการเปลี่ยนหมู่ได้มีมากมายในคณิตศาสตร์ และด้วยข้อเท็จจริงที่ว่าโครงสร้างเชิงพีชคณิตส่วนใหญ่จำเป็นต้องมีการดำเนินการทวิภาคที่เปลี่ยนหมู่ได้เป็นส่วนประกอบ อย่างไรก็ตามการดำเนินการหลายอย่างที่สำคัญก็ เปลี่ยนหมู่ไม่ได้ หรือ ไม่เปลี่ยนหมู่ (non-associative) เช่นผลคูณไขว้ของเวกเตอร์วิคเตอร์ โรเนลเเมสซี

นิยาม

กำหนดการดำเนินการทวิภาค แม่แบบ:Unicode บนเซต S เราจะกล่าวว่าการดำเนินการนั้น เปลี่ยนหมู่ได้ ถ้าหาก

x,y,zS:(x*y)*z=x*(y*z)

และเนื่องจากลำดับของการดำเนินการไม่มีความสำคัญ เราจึงอาจไม่จำเป็นต้องใส่วงเล็บ ดังนี้

x*y*z

อย่างไรก็ตาม สิ่งสำคัญที่จะต้องจดจำคือ การเปลี่ยนลำดับของการดำเนินการจะต้องไม่ทำให้ตัวถูกดำเนินการเปลี่ยนตำแหน่งไปภายในนิพจน์

กำหนดฟังก์ชันทวิภาค f : A×AB เราจะกล่าวว่าฟังก์ชันนั้น เปลี่ยนหมู่ได้ ถ้าหาก

x,y,zA:f(f(x,y),z)=f(x,f(y,z))

ตัวอย่าง

ตัวอย่างบางส่วนของการดำเนินการเปลี่ยนหมู่มีดังนี้

(x+y)+z=x+(y+z)=x+y+z(xy)z=x(yz)=xyz  }x,y,z
gcd(gcd(x,y),z)=gcd(x,gcd(y,z))=gcd(x,y,z) lcm(lcm(x,y),z)=lcm(x,lcm(y,z))=lcm(x,y,z)}x,y,z
(AB)C=A(BC)=ABC(AB)C=A(BC)=ABC}for all sets A,B,C
  • ถ้า M เป็นเซตเซตหนึ่ง และ S แทนเซตของฟังก์ชันทั้งหมดจาก M ไปยัง M แล้วการดำเนินการของฟังก์ชันประกอบบน S เปลี่ยนหมู่ได้
(fg)h=f(gh)=fghf,g,hS
  • ในกรณีทั่วไป กำหนดให้เซต M, N, P, Q และการจับคู่ h : MN, g: NP, f: PQ, แล้ว
(fg)h=f(gh)=fgh

ดังนั้น การจับคู่จึงเป็นการดำเนินการเปลี่ยนหมู่ได้เสมอ

การดำเนินการไม่เปลี่ยนหมู่

กำหนดการดำเนินการทวิภาค แม่แบบ:Unicode บนเซต S เราจะกล่าวว่าการดำเนินการนั้น เปลี่ยนหมู่ไม่ได้ ถ้าหาก

x,y,zS:(x*y)*zx*(y*z)

การดำเนินการเช่นนั้น ลำดับของการคำนวณจึงมีความสำคัญ เช่นการลบ การหาร และการยกกำลัง

(53)25(32)
(4÷2)÷24÷(2÷2)
2(12)(21)2

เครื่องหมายวงเล็บจึงถูกใช้เพื่อแสดงลำดับของการดำเนินการ เมื่อมีการดำเนินการเหล่านี้มากกว่าหนึ่งครั้งในนิพจน์ อย่างไรก็ตาม นักคณิตศาสตร์ได้ยอมรับลำดับความสำคัญของการดำเนินการที่ไม่เปลี่ยนหมู่หลายชนิด เป็นหลักการในการเขียนเพื่อหลีกเลี่ยงการใช้วงเล็บ แบ่งออกได้เป็นสองประเภท ได้แก่การดำเนินการที่จัดกลุ่มทางซ้าย

x*y*z=(x*y)*zw*x*y*z=((w*x)*y)*zetc.  }w,x,y,zS

และการดำเนินการที่จัดกลุ่มทางขวา

x*y*z=x*(y*z)w*x*y*z=w*(x*(y*z))etc.  }w,x,y,zS

ดูเพิ่ม