ค่าเบี่ยงเบนมาตรฐาน

จาก testwiki
ไปยังการนำทาง ไปยังการค้นหา

ค่าเบี่ยงเบนมาตรฐาน หรือ ส่วนเบี่ยงเบนมาตรฐาน หรือ ความเบี่ยงเบนมาตรฐาน (แม่แบบ:Langx) ในทางสถิติศาสตร์และความน่าจะเป็น เป็นการวัดการกระจายแบบหนึ่งของกลุ่มข้อมูล สามารถนำไปใช้กับการแจกแจงความน่าจะเป็น ตัวแปรสุ่ม ประชากร หรือมัลติเซต ค่าเบี่ยงเบนมาตรฐานมักเขียนแทนด้วยอักษรกรีกซิกมาตัวเล็ก (σ) นิยามขึ้นจากส่วนเบี่ยงเบนแบบ root mean square (RMS) กับค่าเฉลี่ย หรือนิยามขึ้นจากรากที่สองของความแปรปรวน

ค่าเบี่ยงเบนมาตรฐานคิดค้นโดย ฟรานซิส กาลตัน (Francis Galton) ในช่วงปลายคริสต์ทศวรรษ 1860[1] เป็นการวัดการกระจายทางสถิติที่เป็นปกติทั่วไป ใช้สำหรับเปรียบเทียบว่าค่าต่าง ๆ ในเซตข้อมูลกระจายตัวออกไปมากน้อยเท่าใด หากข้อมูลส่วนใหญ่อยู่ใกล้ค่าเฉลี่ยมาก ค่าเบี่ยงเบนมาตรฐานก็จะมีค่าน้อย ในทางกลับกัน ถ้าข้อมูลแต่ละจุดอยู่ห่างไกลจากค่าเฉลี่ยเป็นส่วนมาก ค่าเบี่ยงเบนมาตรฐานก็จะมีค่ามาก และเมื่อข้อมูลทุกตัวมีค่าเท่ากันหมด ค่าเบี่ยงเบนมาตรฐานจะมีค่าเท่ากับศูนย์ นั่นคือไม่มีการกระจายตัว คุณสมบัติที่เป็นประโยชน์อย่างหนึ่งก็คือ ค่าเบี่ยงเบนมาตรฐานใช้หน่วยอันเดียวกันกับข้อมูล แต่กับความแปรปรวนนั้นไม่ใช่

เมื่อตัวอย่างของข้อมูลกลุ่มหนึ่งถูกเลือกมาจากประชากรทั้งหมด ค่าเบี่ยงเบนมาตรฐานของประชากรสามารถประมาณค่าได้จากค่าเบี่ยงเบนมาตรฐานของกลุ่มตัวอย่างนั้น

นิยาม

ค่าเบี่ยงเบนมาตรฐานของตัวแปรสุ่ม X มีการนิยามไว้ดังนี้

σ=E((XE(X))2)=E(X2)(E(X))2=Var(X)

เมื่อ E(X) หมายถึงค่าคาดหมายของ X (เป็นอีกความหมายหนึ่งของมัชฌิม) และ Var(X) หมายถึงความแปรปรวนของ X

แต่ก็ไม่ใช่ว่าตัวแปรสุ่มทุกตัวจะมีค่าเบี่ยงเบนมาตรฐาน ถ้าหากค่าคาดหมายไม่มีอยู่จริงหรือไม่นิยาม ตัวอย่างเช่น ค่าเบี่ยงเบนมาตรฐานของตัวแปรสุ่มภายใต้การแจกแจงโคชี (Cauchy distribution) จะไม่นิยาม เพราะว่า E(X) ก็ไม่นิยามเช่นกัน

ถ้าตัวแปรสุ่ม X มีพื้นฐานอยู่บนเซตข้อมูล x1,...,xN ซึ่งสมาชิกเป็นจำนวนจริงและมีความน่าจะเป็นเท่ากัน ดังนั้นค่าเบี่ยงเบนมาตรฐานสามารถคำนวณได้จากสูตรข้างล่างนี้ อันดับแรกต้องคำนวณหาค่าเฉลี่ยของ X เสียก่อน ค่าเฉลี่ยเขียนแทนด้วย x ซึ่งนิยามด้วยผลรวม (summation) ดังนี้

x=1Ni=1Nxi=x1+x2++xNN

เมื่อ N คือจำนวนสมาชิกของเซตข้อมูล จากนั้นจึงสามารถคำนวณค่าเบี่ยงเบนมาตรฐานได้จาก

σ=1Ni=1N(xix)2

ในทางปฏิบัติ การคำนวณค่าเบี่ยงเบนมาตรฐานของตัวแปรสุ่มชนิดไม่ต่อเนื่องข้างต้น สามารถสรุปได้ดังนี้

  1. สำหรับแต่ละค่าของ xi ให้คำนวณผลต่างของ xix
  2. นำผลต่างแต่ละตัวมายกกำลังสอง
  3. บวกผลลัพธ์ทั้งหมดเข้าด้วยกันแล้วหารด้วย N ค่าที่ได้นี้คือความแปรปรวน σ2
  4. คำนวณหารากที่สองที่เป็นบวกของความแปรปรวน จะได้ค่าเบี่ยงเบนมาตรฐาน

นอกจากนั้นสูตรดังกล่าวสามารถดัดแปลงให้เป็นอีกรูปแบบหนึ่งได้ดังนี้

σ=1N(i=1Nxi2Nx2)

ซึ่งความเท่ากันของทั้งสองสูตร สามารถพิสูจน์ได้ด้วยความรู้ทางพีชคณิต

i=1N(xix)2=i=1N(xi22xix+x2)=(i=1Nxi2)(2xi=1Nxi)+Nx2=(i=1Nxi2)2x(Nx)+Nx2=(i=1Nxi2)2Nx2+Nx2=(i=1Nxi2)Nx2

การประมาณค่าเบี่ยงเบนมาตรฐานของประชากร

ในความเป็นจริง การคำนวณหาค่าเบี่ยงเบนมาตรฐานของประชากรทั่วทั้งหมดนั้น อาจไม่สามารถทำให้เกิดขึ้นจริงได้ เว้นแต่ในกรณีเฉพาะเช่นการทดสอบมาตรฐาน (standardized test) ซึ่งทุกสมาชิกของประชากรจะถือว่าเป็นกลุ่มตัวอย่างทั้งหมด แต่ในกรณีส่วนใหญ่ ค่าเบี่ยงเบนมาตรฐานจะถูกคาดคะเนจากจากส่วนเบี่ยงเบนของตัวอย่างกลุ่มหนึ่งที่มาจากประชากร การวัดที่มักถูกใช้เป็นปกติทั่วไปคือ ค่าเบี่ยงเบนมาตรฐานของตัวอย่าง (sample standard deviation) ซึ่งนิยามโดย

s=1N1i=1N(xix)2

เมื่อ {x1,x2,...,xN} คือตัวอย่างและ x คือค่าเฉลี่ยของตัวอย่าง ตัวส่วน N1 คือองศาเสรี (degrees of freedom) ของเวกเตอร์ (x1x,...,xNx)

เหตุผลของการนิยามเช่นนี้คือ s2 เป็นตัวประมาณค่าไม่เอนเอียง (unbiased estimator) สำหรับความแปรปรวน σ2 บนประชากรที่เป็นพื้นฐาน ถ้าหากความแปรปรวนนั้นมีค่า และค่าต่าง ๆ ของตัวอย่างได้รับการสุ่มออกมาโดยอิสระต่อกัน อย่างไรก็ตาม s ไม่ใช่ตัวประมาณค่าไม่เอนเอียงของ σ แต่เป็นการประเมินค่าที่ต่ำกว่าค่าเบี่ยงเบนมาตรฐานของประชากร และถึงแม้ว่าตัวประมาณค่าไม่เอนเอียงของ σ จะสามารถทราบได้เมื่อตัวแปรสุ่มมีการแจกแจงปกติ แต่สูตรดังกล่าวจะซับซ้อนขึ้นและมีการปรับแต่งตัวเลข ยิ่งกว่านั้นความไม่เอนเอียงก็ไม่ได้เป็นที่ต้องการเสมอไป

ตัวประมาณค่าอีกแบบหนึ่งบางครั้งก็ถูกใช้เหมือนสูตรเดิม

1Ni=1N(xix)2

รูปแบบนี้จะทำให้เกิดค่าคลาดเคลื่อนประเภท mean squared error น้อยกว่าตัวประมาณค่าไม่เอนเอียง และเป็นการประมาณความน่าจะเป็นสูงสุด (Maximum Likelihood Estimation) เมื่อการกระจายของประชากรนั้นเป็นการแจกแจงปกติ

ค่าเบี่ยงเบนมาตรฐานของตัวแปรสุ่มชนิดต่อเนื่อง

การแจกแจงต่อเนื่อง (continuous distribution) มักจะเป็นการให้สูตรมาเพื่อคำนวณหาค่าเบี่ยงเบนมาตรฐานเป็นฟังก์ชันของพารามิเตอร์ของการแจกแจง ในกรณีทั่วไปค่าเบี่ยงเบนมาตรฐานของตัวแปรสุ่มชนิดต่อเนื่อง X โดยมี p(x) เป็นฟังก์ชันความหนาแน่นของความน่าจะเป็น (probability density function) สามารถคำนวณได้จาก

σ=(xμ)2p(x)dx

เมื่อ

μ=xp(x)dx

คุณสมบัติของค่าเบี่ยงเบนมาตรฐาน

  • Stdev(X+c)=Stdev(X)
  • Stdev(cX)=c Stdev(X)
  • Stdev(X+Y)=Var(X)+Var(Y)+2Covar(X,Y)

เมื่อ c เป็นค่าคงตัว และ Covar(X,Y) คือความแปรปรวนร่วมเกี่ยว (covariance) ของตัวแปรสุ่ม X และ Y

อ้างอิง

แม่แบบ:รายการอ้างอิง

แหล่งข้อมูลอื่น