การบวกเมทริกซ์

จาก testwiki
ไปยังการนำทาง ไปยังการค้นหา

แม่แบบ:ต้องการอ้างอิง การบวกเมทริกซ์ ในทางคณิตศาสตร์ เป็นการดำเนินการการบวกบนสองเมทริกซ์ โดยบวกสมาชิกที่สอดคล้องกันเข้าด้วยกันเป็นเมทริกซ์ใหม่

ผลบวกแยกสมาชิก

การบวกเมทริกซ์โดยทั่วไปจะนิยามให้เมทริกซ์สองเมทริกซ์มีมิติเท่ากัน ผลบวกของเมทริกซ์ A และ B ที่มีมิติ m×n เขียนแทนด้วย A + B และได้ผลลัพธ์ออกมาเป็นเมทริกซ์ขนาด m×n ที่มีสมาชิกเป็นผลบวกบนตำแหน่งที่ตรงกัน ตัวอย่างเช่น

[131012]+[007521]=[1+03+01+70+51+22+1]=[138533]

เรายังสามารถดำเนินการการลบบนเมทริกซ์สองเมทริกซ์ได้ ตราบใดที่ยังมีมิติเท่ากัน การลบเมทริกซ์เขียนแทนด้วย AB จะได้เมทริกซ์ที่มีสมาชิกเป็นผลลบบนตำแหน่งที่ตรงกัน ตัวอย่างเช่น

[131012][007521]=[103017051221]=[136511]

เอกลักษณ์การบวกของเมทริกซ์คือเมทริกซ์ศูนย์ ดังตัวอย่างต่อไปนี้

[000000]+[131012]=[131012]=[131012]+[000000]

ผลบวกโดยตรง

การดำเนินการการบวกอีกอย่างหนึ่งซึ่งมีที่ใช้น้อยกว่า คือการบวกโดยตรง เราสามารถบวกเมทริกซ์ A มิติ m×n กับเมทริกซ์ B มิติ p×q ได้โดยไม่จำเป็นต้องมีมิติเท่ากัน ผลลัพธ์จะออกมาเป็นเมทริกซ์ที่มีมิติ (m + p) × (n + q) ตามที่นิยามไว้ดังนี้

AB=[A00B]=[a11a1n00am1amn0000b11b1q00bp1bpq]

ดังตัวอย่างต่อไปนี้

[132231][1601]=[13200231000001600001]

การบวกแบบนี้ไม่มีคุณสมบัติการสลับที่ ลองพิจารณาตัวอย่างนี้เทียบกับข้างบน

[1601][132231]=[16000010000013200231]

คุณสมบัติ

  • A+B=B+A
  • A+(B+C)=(A+B)+C
  • (r+s)A=rA+sA
  • r(A+B)=rA+rB

แหล่งข้อมูลอื่น

แม่แบบ:โครงคณิตศาสตร์