โลก (ดาวเคราะห์)
แม่แบบ:บทความคัดสรร แม่แบบ:กึ่งล็อก แม่แบบ:ความหมายอื่น2 แม่แบบ:กล่องข้อมูล ดาวเคราะห์
โลก (แม่แบบ:Langx) เป็นดาวเคราะห์ลำดับที่สามจากดวงอาทิตย์ และเป็นวัตถุทางดาราศาสตร์เพียงหนึ่งเดียวที่ทราบว่ามีสิ่งมีชีวิต จากการวัดอายุด้วยกัมมันตรังสีและแหล่งหลักฐานอื่นได้ความว่าโลกกำเนิดเมื่อประมาณ 4,500 ล้านปีก่อน[1][2][3] โลกมีอันตรกิริยะเชิงโน้มถ่วงกับวัตถุอื่นในอวกาศโดยเฉพาะดวงอาทิตย์และดวงจันทร์ ซึ่งเป็นดาวบริวารถาวรหนึ่งเดียวของโลก โลกโคจรรอบดวงอาทิตย์ใช้เวลา 365.2425 วัน เรียกว่า ปี ซึ่งระหว่างนั้นโลกโคจรรอบแกนตัวเองประมาณ 366.2425 รอบ[n 1]
แกนหมุนของโลกเอียงทำให้เกิดฤดูกาลต่าง ๆ บนผิวโลก[4] อันตรกิริยาความโน้มถ่วงระหว่างโลกกับดวงจันทร์ก่อให้เกิดน้ำขึ้นลงมหาสมุทร ทำให้การหมุนบนแกนของโลกมีเสถียรภาพ และค่อย ๆ ชะลอการหมุนของโลก[5] โลกเป็นดาวเคราะห์ที่มีความหนาแน่นสูงสุดในระบบสุริยะและใหญ่สุดในดาวเคราะห์คล้ายโลก 4 ดวง
ธรณีภาคของโลกแบ่งออกได้เป็นหลาย ๆ ส่วน เรียกว่าแผ่นธรณีภาค ซึ่งย้ายที่ตัดผ่านพื้นผิวตลอดเวลาหลายล้านปี ร้อยละ 71 ของพื้นผิวโลกปกคลุมด้วยน้ำ ซึ่งส่วนใหญ่เป็นมหาสมุทร[6] อีกร้อยละ 29 ที่เหลือเป็นแผ่นดินประกอบด้วยทวีปและเกาะซึ่งมีทะเลสาบ แม่น้ำและแหล่งน้ำอื่นจำนวนมากกอปรเป็นอุทกภาค บริเวณขั้วโลกทั้งสองปกคลุมด้วยน้ำแข็งเป็นส่วนใหญ่ ได้แก่แผ่นน้ำแข็งแอนตาร์กติก และน้ำแข็งทะเลของแพน้ำแข็งขั้วโลก บริเวณภายในของโลกยังคงมีความเคลื่อนไหวโดยมีแก่นชั้นในซึ่งเป็นเหล็กในสถานะของแข็ง มีแก่นเหลวชั้นนอกซึ่งกำเนิดสนามแม่เหล็ก และชั้นแมนเทิลพาความร้อนที่ขับเคลื่อนการแปรสัณฐานแผ่นธรณีภาค
ภายในพันล้านปีแรก[7] สิ่งมีชีวิตปรากฏขึ้นในมหาสมุทรและเริ่มส่งผลกระทบต่อชั้นบรรยากาศและผิวดาว เกื้อหนุนให้เกิดการแพร่ขยายของสิ่งมีชีวิตที่ใช้ออกซิเจนเช่นเดียวกับสิ่งมีชีวิตที่ไม่ใช้ออกซิเจน หลักฐานธรณีวิทยาบางส่วนชี้ว่าชีวิตอาจกำเนิดขึ้นเร็วสุด 4.1 พันล้านปีก่อน นับแต่นั้นตำแหน่งของโลกในระบบสุริยะ คุณสมบัติทางกายภาพของโลก และประวัติศาสตร์ธรณีวิทยาของโลกประกอบกันทำให้สิ่งมีชีวิตวิวัฒนาการและแพร่พันธุ์ได้[8][9] ในประวัติศาสตร์ของโลก ความหลากหลายทางชีวภาพผ่านระยะการขยายยาวนาน แต่ถูกขัดจังหวะบางครั้งด้วยการสูญพันธุ์ครั้งใหญ่[10] กว่าร้อยละ 99 ของสปีชีส์ทั้งหมดที่เคยอยู่อาศัยบนโลกนั้นสูญพันธุ์ไปแล้ว[11][12] ประมาณการจำนวนสปีชีส์บนโลกปัจจุบันมีหลากหลาย[13][14][15] และสปีชีส์ส่วนใหญ่ยังไม่มีผู้อธิบาย[16] มนุษย์กว่า 7.6 พันล้านคนอาศัยอยู่บนโลกและอาศัยชีวมณฑลและทรัพยากรธรรมชาติของโลกเพื่อการอยู่รอด มนุษย์พัฒนาสังคมและวัฒนธรรมหลากหลาย ในทางการเมือง โลกมีรัฐเอกราชกว่า 200 รัฐ ในบางครั้งทางโหราศาสตร์มักจะเชื่อว่าโลกคือดาราหู ซึ่งจะปรากฏในปัจจุบันนี้
ชื่อและศัพทมูลวิทยา
คำว่า โลก ในภาษาไทยมีที่มาจากคำในภาษาบาลี โลก (โล-กะ) คนไทยใช้คำนี้เรียกโลกตั้งแต่เมื่อใดนั้นไม่ปรากฏหลักฐานแน่ชัด แต่คาดว่าน่าจะได้รับอิทธิพลสืบทอดผ่านมาทางพระพุทธศาสนา เดิมนั้นคำว่าโลกไม่ได้หมายความเฉพาะเพียงแต่โลกที่เป็นวัตถุธาตุ แต่ใช้ในหลายความหมาย ได้แก่ "หมู่" "เหล่า" "ขอบเขต" "ทั้งหมดในขอบเขต" "ขอบเขตอาศัย" "ความเป็นไป" "ความเป็นอยู่"[17] หากกล่าวถึงโลกทั้ง ๓ ก็จะหมายถึง สังขารโลก (โลกคือสังขาร) สัตว์โลก (โลกคือหมู่สัตว์) และโอกาสโลก (โลกคือแผ่นดิน)[18] ปัจจุบันมีการใช้คำว่า โลกในความหมายเกี่ยวข้องกับมนุษย์ หรืออารยธรรมมนุษย์[19] (ซึ่งตรงกับคำว่า World ในภาษาอังกฤษ) นอกเหนือจากความหมายดาวเคราะห์ที่นิยมใช้ทั่วไป
คำว่าโลกในภาษาต่างประเทศ อังกฤษร่วมสมัยใช้คำว่า แม่แบบ:Anchor Earth พัฒนามาจากรูปแบบภาษาอังกฤษสมัยกลางต่าง ๆ กันแม่แบบ:Refn[20] ซึ่งสืบมาจากคำนามในภาษาอังกฤษสมัยเก่าที่นิยมสะกดว่า แม่แบบ:Linktext[21] มีรากเดียวกันกับทุกภาษาในกลุ่มเจอร์แมนิก และโปรโตเจอร์แมนิกที่ได้ประกอบเป็น *erþō ตามที่ปรากฏในสมัยแรก ๆ มีการใช้คำ eorðe เพื่อแปลความจากคำภาษาลาติน แม่แบบ:Linktext และภาษากรีก แม่แบบ:Linktext (gē) ในความหมาย พื้นดินแม่แบบ:Refn ดินแม่แบบ:Refn ผืนดินแห้งแม่แบบ:Refn โลกมนุษย์แม่แบบ:Refn พื้นผิวของโลก (รวมทั้งทะเล)แม่แบบ:Refn ตลอดจนพิภพโลกทั้งมวลแม่แบบ:Refn เช่นเดียวกันกับเทอร์ราและไกอา โลกถือว่าเป็นเทพเจ้าตามลัทธิเพเกินของชาวเจอร์แมนิก-ชาวแองเกิลตามที่แทซิทัสได้บันทึกไว้ในบรรดาผู้ศรัทธาในเทพเนอทัส[22] และภายหลังตามเทวตำนานนอร์ส คือ ยูร์ด (Jörð) ยักษิณีซึ่งสมรสกับโอดินและเป็นมารดาของทอร์[23]
อีกหลายภาษาที่มีความเป็นมาใกล้เคียงกับไทยเช่นภาษาลาวก็เรียกโลกว่า ໂລກ (โลก) เช่นเดียวกัน ปัจจุบันเยอรมันใช้คำเรียกโลกคือ Erde (แอร์เดอะ) คล้ายกับดัตช์ Aarde (อาร์เดอะ), กลุ่มภาษาโรมานซ์ สเปนใช้คำ Tierra (ตีเอร์รา) คล้ายกับอิตาลีที่ใช้ Terra (เตร์รา) หรือฝรั่งเศส Terre (แตร์), ภาษาจีนใช้ 地球 (Dìqiú ตี้ฉิว) หรือ 坤輿 (Kūnyú คุนหยู๋) ญี่ปุ่นเรียก 地球 (Chikyū จิคีว) เกาหลีเรียก 지구 (Jigu ชีกู) และสันสกฤตใช้คำ पृथ्वी (ปฐวี)
ลำดับเวลา
การกำเนิด

วัตถุแรกเริ่มที่สุดที่พบในระบบสุริยะมีอายุย้อนหลังไปถึง แม่แบบ:Val[24] โลกยุคแรกเริ่มถือกำเนิดขึ้นเมื่อ แม่แบบ:Val[7] มีการก่อกำเนิดและวิวัฒนาการของวัตถุต่าง ๆ ในระบบสุริยะร่วมกับดวงอาทิตย์ ตามทฤษฎีแล้วเนบิวลาสุริยะแยกส่วนอาณาบริเวณหนึ่งออกจากเมฆโมเลกุลโดยการยุบตัวจากแรงโน้มถ่วง ซึ่งเริ่มหมุนและแบนลงเป็นจานรอบดาวฤกษ์ จากนั้นดาวเคราะห์ต่าง ๆ เกิดขึ้นจากจานนั้นพร้อมกับดวงอาทิตย์ ในเนบิวลาประกอบด้วยก๊าซ เม็ดน้ำแข็ง และฝุ่น (รวมทั้งนิวไคลด์แรกกำเนิด) ตามทฤษฎีเนบิวลา พลาเนตติซิมัล (planetesimal) หรือวัตถุแข็งที่จะก่อกำเนิดดาวเคราะห์ เกิดขึ้นจากการงอกพอกพูน โดยโลกบรรพกาลใช้เวลาก่อกำเนิด 10–20 ล้านปี[25]
ดวงจันทร์กำเนิดขึ้นเมื่อประมาณ แม่แบบ:Val[26] การกำเนิดของดวงจันทร์ยังเป็นหัวข้อการวิจัยในปัจจุบัน สมมติฐานนำกล่าวว่าดวงจันทร์ถือกำเนิดขึ้นโดยการพอกพูนจากวัตถุที่หลุดออกจากโลกหลังจากโลกถูกวัตถุขนาดใหญ่เท่าดาวอังคารชื่อว่า เธีย (Theia) พุ่งเข้าชน[27] แบบจำลองนี้กะว่ามวลของเธียคิดเป็นประมาณร้อยละ 10 ของมวลโลก[28] พุ่งเข้าชนโลกในลักษณะแฉลบและมวลบางส่วนรวมเข้ากับโลก[29] ในระหว่างเวลาประมาณ 4.1 และ 3.8 พันล้านปีก่อน ดาวเคราะห์น้อยจำนวนมากพุ่งชนระหว่างการระดมชนหนักครั้งสุดท้าย ก่อให้เกิดการเปลี่ยนแปลงอย่างใหญ่หลวงกับบริเวณพื้นที่ผิวส่วนใหญ่ของดวงจันทร์รวมทั้งโลก
ประวัติทางธรณีวิทยา

บรรยากาศโลกและมหาสมุทรประกอบขึ้นจากกัมมันตภาพภูเขาไฟและกระบวนการปล่อยก๊าซ (outgassing) ไอน้ำจากสองแหล่งดังกล่าวควบแน่นเป็นมหาสมุทร รวมกับน้ำและน้ำแข็งที่มากับดาวเคราะห์น้อย ดาวเคราะห์ก่อนเกิด และดาวหาง[30] ตามแบบจำลองนี้ "แก๊สเรือนกระจก" ในบรรยากาศช่วยรักษามหาสมุทรไม่ให้เยือกแข็งเมื่อดวงอาทิตย์ที่เพิ่งก่อกำเนิดยังมีความสว่างเพียงร้อยละ 70 เทียบกับปัจจุบัน[31] ราว แม่แบบ:Val เกิดสนามแม่เหล็กโลกซึ่งช่วยปกป้องบรรยากาศไม่ให้ถูกลมสุริยะพัดพาไป[32]
เปลือกโลกก่อรูปขึ้นเมื่อชั้นนอกที่หลอมเหลวของโลกเย็นตัวลงจนอยู่ในสถานะแข็ง มีแบบจำลองสองแบบจำลอง[33] ที่อธิบายการเกิดขึ้นของแผ่นดินโดยแบบจำลองหนึ่งเสนอว่า แผ่นดินค่อย ๆ เกิดขึ้นจนมีรูปร่างดังในปัจจุบัน[34] อีกแบบจำลองหนึ่งซึ่งอาจเป็นไปได้มากกว่า เสนอว่าแผ่นดินเติบโตอย่างรวดเร็ว[35] ตั้งแต่ช่วงแรก ๆ ในประวัติศาสตร์โลก[36] อันเนื่องมาจากการดำรงอยู่มาต่อเนื่องยาวนานของพื้นที่ส่วนทวีป[37][38][39] ทวีปต่าง ๆ เกิดขึ้นโดยการแปรสัณฐานแผ่นธรณีภาคซึ่งเป็นกระบวนการที่มีสาเหตุจากการสูญเสียความร้อนของบริเวณภายในของโลกอย่างต่อเนื่อง ตามมาตรเวลากว่าหลายร้อยล้านปี มีการรวมมหาทวีปแล้วแยกออกจากกัน ประมาณ แม่แบบ:Val มหาทวีปแรก ๆ ที่ทราบชื่อโรดิเนียเริ่มแตกออกจากกัน ต่อมาทวีปทั้งหลายกลับมารวมกันเป็นมหาทวีปแพนโนเชียเมื่อราว 600–แม่แบบ:Val และสุดท้ายคือมหาทวีปแพนเจียซึ่งก็แยกออกจากกันเมื่อราว แม่แบบ:Val[40]
รูปแบบปัจจุบันของยุคน้ำแข็งเริ่มขึ้นเมื่อประมาณ แม่แบบ:Valแล้วทวีความรุนแรงขึ้นระหว่างสมัยไพลสโตซีนเมื่อราว แม่แบบ:Val ตั้งแต่นั้นเป็นต้นมาบริเวณละติจูดสูง ๆ เผชิญกับวัฏจักรการเกิดของธารน้ำแข็งสลับกับการละลายแบบเวียนซ้ำโดยอุบัติซ้ำในทุก ๆ แม่แบบ:Val–แม่แบบ:Val การเปลี่ยนสภาพโดยธารน้ำแข็งของทวีปครั้งสุดท้ายสิ้นสุดลงเมื่อประมาณ แม่แบบ:Val[41]
วิวัฒนาการของสิ่งมีชีวิต
แม่แบบ:กาลานุกรมสิ่งมีชีวิต แม่แบบ:Main
คาดกันว่าปฏิกิริยาเคมีพลังงานสูงทำให้เกิดโมเลกุลที่สามารถถ่ายแบบตนเองได้เมื่อราวสี่พันล้านปีก่อน อีกครึ่งพันล้านปีต่อมา เกิดบรรพบุรุษร่วมสุดท้ายของสรรพชีวิต[42] วิวัฒนาการของการสังเคราะห์ด้วยแสงทำให้บรรดาสิ่งมีชีวิตสามารถเก็บเกี่ยวพลังงานจากดวงอาทิตย์ได้โดยตรง ออกซิเจนในรูปโมเลกุล (O2) ที่เกิดจากการสังเคราะห์ด้วยแสงมีการสะสมในบรรยากาศ และด้วยผลกระทบจากรังสีอัลตราไวโอเลตจากดวงอาทิตย์จึงได้ก่อชั้นเกราะโอโซน (O3) ขึ้นในบรรยากาศเบื้องบน[43] การรวมเซลล์ขนาดเล็กในเซลล์ที่ใหญ่กว่าทำให้เกิดพัฒนาการของเซลล์ซับซ้อนเรียกว่า ยูแคริโอต[44] สิ่งมีชีวิตหลายเซลล์ที่แท้จริงเกิดขึ้นเมื่อเซลล์ต่าง ๆ ภายในโคโลนีมีการแบ่งหน้าที่เฉพาะมากขึ้น เนื่องจากชั้นโอโซนช่วยดูดซับรังสีอัลตราไวโอเลตอันเป็นอันตรายออกไป สิ่งมีชีวิตจึงอยู่อาศัยได้บนพื้นผิวโลก[45] หลักฐานทางบรรพชีวินแรก ๆ ของสิ่งมีชีวิตบนโลกคือ ซากดึกดำบรรพ์ผืนจุลชีพที่พบในหินทรายอายุ 3.48 พันล้านปีในออสเตรเลียตะวันตก[46][47] แกรไฟต์ชีวภาพในชั้นหินตะกอนแปรอายุเก่าแก่ประมาณ 3.7 พันล้านปีค้นพบในกรีนแลนด์ตะวันตก[48] หลักฐานโดยตรงของสิ่งมีชีวิตบนโลกอย่างแรกอยู่ในหินออสเตรเลียอายุ 3.45 พันล้านปีที่แสดงซากดึกดำบรรพ์ของจุลินทรีย์[49][50]
ระหว่างมหายุคนีโอโปรเทอโรโซอิก (750 และ แม่แบบ:Val) บริเวณส่วนใหญ่ของโลกถูกน้ำแข็งปกคลุม สมมติฐานนี้ชื่อ "โลกก้อนหิมะ" และมีความน่าสนใจเป็นพิเศษเนื่องจากเป็นเหตุการณ์ที่เกิดขึ้นก่อนการระเบิดแคมเบรียน เมื่อสิ่งมีชีวิตมีความซับซ้อนเพิ่มขึ้นอย่างสำคัญ[51] นับจากการระเบิดแคมเบรียนราว แม่แบบ:Val เกิดการสูญพันธุ์ของสิ่งมีชีวิตครั้งใหญ่ห้าครั้ง[52] เหตุการณ์สูญพันธุ์ครั้งล่าสุดเกิดขึ้นเมื่อ แม่แบบ:Valเมื่อการพุ่งชนของดาวเคราะห์น้อยเป็นเหตุให้เกิดการสูญพันธุ์ของไดโนเสาร์ (ที่ไม่ใช่นก) และสัตว์เลื้อยคลานขนาดใหญ่อื่น ๆ แต่สัตว์ขนาดเล็กบางส่วนเหลือรอดมาได้เช่นสัตว์เลี้ยงลูกด้วยนมซึ่งมีลักษณะคล้ายหนู ตลอด แม่แบบ:Val สัตว์เลี้ยงลูกด้วยนมได้แตกแขนงออกไปมากมาย และเมื่อหลายล้านปีที่แล้ว สัตว์คล้ายลิงใหญ่ไม่มีหางแอฟริกา เช่น Orrorin tugenensis มีความสามารถยืนด้วยลำตัวตั้งตรง[53] ทำให้สามารถใช้เครื่องมือและเกื้อหนุนการสื่อสารระหว่างกัน นำมาซึ่งโภชนาการและการกระตุ้นที่จำเป็นสำหรับสมองขนาดใหญ่ขึ้น นำไปสู่วิวัฒนาการของเผ่าพันธุ์มนุษย์ การพัฒนาเกษตรกรรมและอารยธรรมในเวลาต่อมา ช่วยให้มนุษย์มีอิทธิพลต่อโลกและธรรมชาติ และมีจำนวนของสิ่งมีชีวิตอื่นซึ่งยังมีผลมาจนทุกวันนี้[54]
อนาคต
อนาคตระยะยาวที่คาดหมายของโลกนั้นเกี่ยวข้องกับอนาคตของดวงอาทิตย์ ความสว่างของดวงอาทิตย์จะเพิ่มขึ้นอีกร้อยละ 10 ในอีก แม่แบบ:Val และร้อยละ 40 เมื่อตลอดเวลา แม่แบบ:Valถัดจากนั้น[55] การเพิ่มขึ้นของอุณหภูมิพื้นผิวโลกจะเร่งวัฏจักรคาร์บอนอนินทรีย์ ลดความเข้มข้นของคาร์บอนไดออกไซด์จนพืชไม่สามารถดำรงชีวิตอยู่ได้ (แม่แบบ:Valในพืชที่สังเคราะห์ด้วยแสงแบบซี4) ในระยะเวลาประมาณ แม่แบบ:Val–แม่แบบ:Valข้างหน้า[56] การขาดแคลนพืชจะส่งผลกระทบให้ออกซิเจนหายไปจากบรรยากาศ ทำให้สัตว์อยู่ไม่ได้[57] คล้อยหลังไปอีกพันล้านปีปริมาณน้ำทั้งหมดบนผิวโลกจะสูญสิ้น[58] และอุณหภูมิเฉลี่ยของโลกจะพุ่งขึ้นไปถึง 70 องศาเซลเซียส[57] คาดหมายว่าโลกจะพออยู่อาศัยได้อีกประมาณ แม่แบบ:Valนับจากจุดนั้น[56] หรืออาจยืดออกไปถึง แม่แบบ:Valถ้าไนโตรเจนหมดไปจากบรรยากาศ[59] แม้ว่าดวงอาทิตย์จะมีอายุนิรันดร์และมีความเสถียร กว่าร้อยละ 27 ของน้ำในมหาสมุทรปัจจุบันก็จะไหลสู่เนื้อโลกในเวลาหนึ่งพันล้านปี เนื่องจากไอน้ำที่ปะทุออกมาจากสันกลางมหาสมุทรลดลง[60]
ดวงอาทิตย์จะวิวัฒนาการเป็นดาวยักษ์แดงในราว แม่แบบ:Valข้างหน้า แบบจำลองทำนายว่าดวงอาทิตย์จะขยายตัวออกประมาณ 1 หน่วยดาราศาสตร์ แม่แบบ:Nowrap หรือประมาณ 250 เท่าของรัศมีปัจจุบัน[55][61] ชะตาของโลกนั้นยังไม่ชัดเจนนัก เมื่อเป็นดาวยักษ์แดงแล้วดวงอาทิตย์จะสูญเสียมวลไปประมาณร้อยละ 30 ดังนั้นหากปราศจากผลจากฤทธิ์ไทด์ โลกจะเคลื่อนไปโคจรห่างจากดวงอาทิตย์ 1.7 หน่วยดาราศาสตร์ แม่แบบ:Nowrap เมื่อดาวมีรัศมีมากที่สุด สิ่งมีชีวิตที่ยังเหลืออยู่เกือบทั้งหมดหรือทั้งหมดก็จะถูกทำลายจากความสว่างที่เพิ่มขึ้นของดวงอาทิตย์ (เพิ่มขึ้นสูงสุดที่ประมาณ 5,000 เท่าจากระดับปัจจุบัน)[55] การจำลองในปี ค.ศ. 2008 ชี้ว่า สุดท้ายวงโคจรของโลกจะเสื่อมสลายอันเนื่องมาจากผลจากแรงไทด์ และลากเอาโลกให้ตกเข้าสู่บรรยากาศของดวงอาทิตย์ที่เป็นยักษ์แดงนั้นแล้วก็ระเหยไปจนหมดสิ้น[61]
ลักษณะทางกายภาพ
รูปร่าง

โลกมีรูปร่างประมาณทรงคล้ายทรงกลมแบนขั้ว โลกแบนลงบริเวณแกนทางภูมิศสตร์และโป่งบริเวณแถบศูนย์สูตร[63] การโป่งนี้เป็นผลมาจากการหมุนรอบตัวเองของโลก เส้นผ่านศูนย์กลางในแนวศูนย์สูตรยาวกว่าเส้นผ่านศูนย์กลางในแนวขั้วเหนือ-ใต้ราว 43 กิโลเมตร[64] จุดบนพื้นผิวโลกที่ห่างจากจุดศูนย์กลางมวลของโลกมากที่สุดคือ ยอดภูเขาไฟชิมโบราโซแถบศูนย์สูตรในประเทศเอกวาดอร์[65] ภูมิประเทศในแต่ละท้องที่มีการเบี่ยงเบนไปจากทรงกลมอุดมคติ แต่เมื่อมองในระดับโลกทั้งใบการเบี่ยงเบนเหล่านี้ก็ถือว่าเล็กน้อย จุดที่ถือว่ามีความเบี่ยงเบนท้องถิ่นมากที่สุดบนพื้นผิวหินของโลกก็คือ ยอดเขาเอเวอเรสต์ด้วยระดับความสูง แม่แบบ:Valจากระดับน้ำทะเลกลาง คิดเป็นค่าความเบี่ยงเบนร้อยละ 0.14 และร่องลึกก้นสมุทรมาเรียนาที่ระดับความลึก แม่แบบ:Valจากระดับน้ำทะเลกลาง คิดเป็นค่าความเบี่ยงเบนร้อยละ 0.17แม่แบบ:Refn
ในวิชาภูมิมาตรศาสตร์ รูปทรงแท้จริงของมหาสมุทรโลกหากปราศจากแผ่นดินและอิทธิพลรบกวนอย่างกระแสน้ำและลม เรียก จีออยด์ กล่าวคือ จีออยด์เป็นผิวสมศักย์ความโน้มถ่วง (surface of gravitational equipotential) ที่ระดับทะเลปานกลาง
| สารประกอบ | สูตร | องค์ประกอบ | |
|---|---|---|---|
| ทวีป | สมุทร | ||
| ซิลิกา | SiO2 | 60.2% | 48.6% |
| อะลูมินา | Al2O3 | 15.2% | 16.5% |
| ไลม์ | CaO | 5.5% | 12.3% |
| แมกนีเซีย | MgO | 3.1% | 6.8% |
| ไอเอิร์น(II) ออกไซด์ | FeO | 3.8% | 6.2% |
| โซเดียมออกไซด์ | Na2O | 3.0% | 2.6% |
| โพแทสเซียมออกไซด์ | K2O | 2.8% | 0.4% |
| ไอเอิร์น(III) ออกไซด์ | Fe2O3 | 2.5% | 2.3% |
| น้ำ | H2O | 1.4% | 1.1% |
| คาร์บอนไดออกไซด์ | CO2 | 1.2% | 1.4% |
| ไทเทเนียมไดออกไซด์ | TiO2 | 0.7% | 1.4% |
| ฟอสฟอรัสเพนทอกไซด์ | P2O5 | 0.2% | 0.3% |
| รวม | 99.6% | 99.9% | |
องค์ประกอบทางเคมี
แม่แบบ:See also โลกมีมวลโดยประมาณ แม่แบบ:Val ส่วนมากประกอบขึ้นจากเหล็ก (ร้อยละ 32.1) ออกซิเจน (ร้อยละ 30.1) ซิลิกอน (ร้อยละ 15.1) แมกนีเซียม (ร้อยละ 13.9) กำมะถัน (ร้อยละ 2.9) นิกเกิล (ร้อยละ 1.8) แคลเซียม (ร้อยละ 1.5) และอะลูมิเนียม (ร้อยละ 1.4) ส่วนที่เหลืออีกร้อยละ 1.2 ประกอบด้วยธาตุอื่น ๆ ในปริมาณเล็กน้อย จากกระบวนการการแยกลำดับชั้นโดยมวลทำให้เชื่อว่าบริเวณแกนโลกประกอบขึ้นในขั้นต้นด้วยเหล็กร้อยละ 88.8 มีนิกเกิลในปริมาณเล็กน้อยราวร้อยละ 5.8 กำมะถันร้อยละ 4.5 และน้อยกว่าร้อยละ 1 เป็นธาตุพบน้อยชนิดอื่น[67]
หินที่พบได้ทั่วไปที่เป็นส่วนประกอบของเปลือกโลกนั้นเป็นสารประกอบออกไซด์แทบทั้งหมด ส่วนคลอรีน กำมะถัน และฟลูออรีน ถือเป็นข้อยกเว้นสำคัญในบรรดาหินทั้งหลายซึ่งเมื่อรวมปริมาณทั้งหมดแล้วมักจะต่ำกว่าร้อยละ 1 หินออกไซด์หลักได้แก่ ซิลิกา อลูมินา ปูนขาว แมกนีเซีย ออกไซด์ของเหล็ก โพแทช และโซดา[68]
โครงสร้างภายใน
แม่แบบ:Main โครงสร้างภายในของโลกแบ่งออกได้เป็นชั้น ๆ ตามคุณสมบัติกายภาพ (วิทยากระแส) หรือเคมีเช่นเดียวกับดาวเคราะห์หินดวงอื่น ชั้นนอกของโลกเป็นเปลือกซิลิเกตแข็งซึ่งแยกออกชัดเจนด้วยคุณสมบัติทางเคมีโดยมีชั้นเนื้อโลก (mantle) แข็งความหนืดสูงอยู่เบื้องล่าง มีความไม่ต่อเนื่องของโมโฮโลวิคซิค (Mohorovičić discontinuity) คั่นระหว่างเปลือกโลกจากเนื้อโลก เปลือกโลกมีความหนาตั้งแต่ประมาณ 6 กิโลเมตรใต้มหาสมุทรไปจนถึง 30–50 กิโลเมตรใต้ทวีป เปลือกโลกและสภาพแข็งเย็นของยอดเนื้อโลกชั้นบนสุดรวมเรียกธรณีภาค (lithosphere) ซึ่งแผ่นธรณีภาคนั้นประกอบขึ้นจากธรณีภาคนี้เอง ใต้ธรณีภาคเป็นฐานธรณีภาค (asthenosphere) ซึ่งเป็นชั้นความหนืดค่อนข้างต่ำที่ธรณีภาคลอยอยู่ การเปลี่ยนแปลงโครงสร้างผลึกในเนื้อโลกเกิดที่ระดับความลึก 410 ถึง 660 กิโลเมตรใต้พื้นผิว เป็นเขตเปลี่ยนผ่านซึ่งแยกระหว่างเนื้อโลกชั้นบนและล่าง ใต้เนื้อโลกเป็นแก่นชั้นนอกที่เป็นของเหลวความหนืดต่ำมากเหนือแก่นชั้นในที่เป็นของแข็ง[69] แก่นชั้นในของโลกอาจหมุนด้วยอัตราเร็วเชิงมุมสูงกว่าส่วนอื่นของดาวเคราะห์เล็กน้อย โดยหมุน 0.1–0.5° ต่อปี[70] รัศมีของแก่นชั้นในคิดเป็นประมาณหนึ่งในห้าของรัศมีโลก
ภาคตัดขวางของโลกจากแกนถึงเอ็กโซสเฟียร์ (ไม่ตามสัดส่วน) |
ความลึก[72] กม. |
ชั้น | ความหนาแน่น ก./ซม.3 |
|---|---|---|---|
| 0–60 | ธรณีภาค[n 2] | — | |
| 0–35 | เปลือก[n 3] | 2.2–2.9 | |
| 35–60 | เนื้อโลกชั้นบน | 3.4–4.4 | |
| 35–2890 | เนื้อโลก | 3.4–5.6 | |
| 100–700 | ฐานธรณีภาค | — | |
| 2890–5100 | แก่นชั้นนอก | 9.9–12.2 | |
| 5100–6378 | แก่นชั้นใน | 12.8–13.1 |
ความร้อน
ความร้อนภายในโลกเป็นผลรวมของความร้อนที่ยังหลงเหลืออยู่จากการงอกพอกพูนของดาวเคราะห์ราวร้อยละ 20 อีกร้อยละ 80 เป็นความร้อนที่ผลิตจากการสลายตัวกัมมันตรังสี[73] ไอโซโทปหลักที่สร้างความร้อนภายในโลกคิอ โพแทสเซียม-40 ยูเรเนียม-238 ยูเรเนียม-235 และทอเรียม-232[74] ที่ใจกลางโลกคาดว่าน่าจะมีอุณหภูมิสูงถึง 6,000 องศาเซลเซียส[75] และมีความดันสูงถึง 360 จิกะปาสกาล[76] ด้วยการที่ความร้อนส่วนใหญ่มาจากการสลายตัวกัมมันตรังสี นักวิทยาศาสตร์จึงเชื่อว่าในช่วงต้นของประวัติศาสตร์โลกก่อนหน้าที่ไอโซปครึ่งชีวิตสั้นทั้งหลายจะหมดไป การสร้างความร้อนของโลกจะต้องสูงกว่าในปัจจุบันมาก คาดว่าประมาณ 3 พันล้านปีก่อน น่าจะมีการผลิตความร้อนมากกว่าปัจจุบันสองเท่า[73] ซึ่งมีผลเพิ่มการพาความร้อนของเนื้อโลกและการแปรสัณฐานแผ่นธรณีภาค และทำให้หินอัคนีบางประเภทอย่างเช่นโคมาไทต์เกิดขึ้นได้ในขณะที่แทบไม่มีเกิดขึ้นในปัจจุบัน[77]
| ไอโซโทป | ปล่อยความร้อน แม่แบบ:Sfrac |
ครึ่งชีวิต ปี |
เนื้อแร่ในแมนเทิลเฉลี่ย แม่แบบ:Sfrac |
ปล่อยความร้อน แม่แบบ:Sfrac |
|---|---|---|---|---|
| 238U | แม่แบบ:Nowrap | แม่แบบ:Nowrap | แม่แบบ:Nowrap | แม่แบบ:Nowrap |
| 235U | แม่แบบ:Nowrap | แม่แบบ:Nowrap | แม่แบบ:Nowrap | แม่แบบ:Nowrap |
| 232Th | แม่แบบ:Nowrap | แม่แบบ:Nowrap | แม่แบบ:Nowrap | แม่แบบ:Nowrap |
| 40K | แม่แบบ:Nowrap | แม่แบบ:Nowrap | แม่แบบ:Nowrap | แม่แบบ:Nowrap |
ค่าเฉลี่ยของการสูญเสียความร้อนจากโลกอยู่ที่ 87 มิลลิวัตต์ต่อตารางเมตร คิดรวมทั้งโลกจะสูญเสียความร้อนที่ แม่แบบ:Nowrap[79] พลังงานความร้อนบางส่วนจากแก่นถูกแมนเทิลพลูมส่งผ่านขึ้นมายังเปลือกโลก ซึ่งเป็นการพาความร้อนแบบหนึ่งที่เกิดจากการไหลขึ้นของหินอุณหภูมิสูง พลูมนี้สามารถทำให้เกิดจุดร้อนและทุ่งบะซอลท์[80] ความร้อนจากภายในโลกส่วนใหญ่สูญเสียไปกับการแปรสัณฐานแผ่นธรณีภาค โดยการไหลขึ้นของเนื้อโลกที่สัมพันธ์กับสันกลางมหาสมุทร หนทางการสูญเสียความร้อนสำคัญสุดท้ายคือการนำความร้อนผ่านธรณีภาคซึ่งปรากฏใต้มหาสมุทรเป็นส่วนใหญ่เพราะเปลือกโลกบริเวณนั้นบางมากกว่าแผ่นเปลือกทวีปมาก[81]
แผ่นธรณีภาค
| ชื่อ | พื้นที่ 106 กม.2 |
|---|---|
| แม่แบบ:Legend | 103.3 |
| แม่แบบ:Legend | 78.0 |
| แม่แบบ:Legend | 75.9 |
| แม่แบบ:Legend | 67.8 |
| แม่แบบ:Legend | 60.9 |
| แม่แบบ:Legend | 47.2 |
| แม่แบบ:Legend | 43.6 |
แม่แบบ:Main ธรณีภาคอันเป็นชั้นนอกแข็งทื่อเชิงกลของโลกนั้นแบ่งออกได้หลายชิ้น เรียกว่า แผ่นธรณีภาค แผ่นเหล่านี้เป็นส่วนแข็งที่เคลื่อนที่ไปโดยสัมพันธ์กับแผ่นใกล้เคียงอื่นโดยมีขอบเขตระหว่างกันอย่างใดอย่างหนึ่งในสามแบบนี้ได้แก่ ขอบเขตแบบเข้าหากัน ซึ่งแผ่นทั้งสองเลื่อนมาชนกัน ขอบเขตแบบแยกจากกัน ซึ่งแผ่นทั้งสองเลื่อนออกห่างกันไป และขอบเขตแปลง (รอยเลื่อนแปรสภาพ) ซึ่งแผ่นทั้งสองไถลผ่านกันทางด้านข้าง การเกิดแผ่นดินไหว กัมมันตภาพภูเขาไฟ การก่อเทือกเขา และการเกิดร่องลึกก้นสมุทร สามารถเกิดได้ตลอดแนวขอบเขตของแผ่นเหล่านี้[83] แผ่นธรณีภาคลอยอยู่บนฐานธรณีภาค ซึ่งเป็นเนื้อโลกชั้นบนส่วนที่มีความแข็งแต่หนืดน้อยกว่า สามารถไหลและเคลื่อนที่ไปพร้อมกับแผ่นธรณีภาคได้[84]

เมื่อแผ่นธรณีภาคมีการเคลื่อนตัว เปลือกโลกส่วนมหาสมุทรจะมุดตัวลงใต้ขอบปะทะของแผ่นเปลือกตามแนวขอบเขตแบบเข้าหากัน ในเวลาเดียวกัน การไหลเลื่อนขึ้นของเนื้อชั้นเนื้อโลกที่ขอบเขตแบบแยกจากกันจะก่อให้เกิดสันกลางมหาสมุทร กระบวนการต่าง ๆ เหล่านี้รวมกันทำให้เกิดการรีไซเคิลแผ่นเปลือกมหาสมุทรกลับสู่เนื้อโลก ด้วยการรีไซเคิลนี้เองพื้นมหาสมุทรส่วนใหญ่จึงมีอายุไม่เกิน 100 ล้านปี เปลือกโลกส่วนมหาสมุทรที่เก่าแก่ที่สุดอยู่ในบริเวณแปซิฟิกตะวันตกโดยมีอายุประมาณกว่า แม่แบบ:Val[85][86] เมื่อเทียบกันแล้ว เปลือกโลกส่วนทวีปที่เก่าแก่ที่สุดมีอายุถึง แม่แบบ:Val[87]
แผ่นธรณีภาคขนาดใหญ่เจ็ดแผ่น ได้แก่ แผ่นแปซิฟิก อเมริกาเหนือ ยูเรเชีย แอฟริกา แอนตาร์กติก อินโด-ออสเตรเลีย และอเมริกาใต้ ส่วนแผ่นที่สำคัญอื่น ประกอบด้วย แผ่นอาระเบีย แผ่นแคริบเบียน แผ่นนาซกานอกชายฝั่งตะวันตกของทวีปอเมริกาใต้ และแผ่นสโกเทียในมหาสมุทรแอตแลนติกใต้ แผ่นออสเตรเลียรวมเข้ากับแผ่นอินเดียระหว่าง 50 ถึง 55 ล้านปีก่อน แผ่นเคลื่อนที่เร็วที่สุดคือแผ่นมหาสมุทร โดยแผ่นโคคอสเคลื่อนที่ด้วยอัตราเร็ว แม่แบบ:Nowrap[88] และแผ่นแปซิฟิกเคลื่อนที่ด้วยอัตราเร็ว แม่แบบ:Nowrap ในอีกทางหนึ่ง แผ่นเคลื่อนที่ช้าที่สุดคือแผ่นยูเรเชียซึ่งดำเนินไปด้วยอัตราเร็วปกติประมาณ 21 มิลลิเมตร/ปี[89]
พื้นผิว

พื้นที่ผิวทั้งหมดของโลกมีประมาณ 510 ล้านตารางกิโลเมตร พื้นที่กว่าร้อยละ 70.8[90] หรือ 361.13 ล้านตารางกิโลเมตร อยู่ใต้ระดับน้ำทะเลและปกคลุมด้วยน้ำมหาสมุทร[91] พื้นที่ใต้น้ำเหล่านี้มีทั้งที่เป็นไหล่ทวีป ภูเขา ภูเขาไฟ[64] ร่องลึกก้นสมุทร หุบเหวใต้ทะเล ที่ราบสูงพื้นสมุทร ที่ราบก้นสมุทร และระบบสันกลางมหาสมุทรที่ทอดตัวทั่วโลก พื้นที่ที่เหลืออีกราวร้อยละ 29.2 หรือ 148.94 ล้านตารางกิโลเมตร ไม่ถูกน้ำปกคลุม มีภูมิประกาศหลากหลายตามสถานที่ ได้แก่ ภูเขา พื้นที่แห้งแล้ง ที่ราบ ที่ราบสูง และภูมิประเทศรูปแบบอื่น ธรณีแปรสัณฐานและการกร่อน การปะทุของภูเขาไฟ การเกิดอุทกภัย การผุพังอยู่กับที่ การเปลี่ยนสภาพโดยธารน้ำแข็ง การเติบโตของพืดหินปะการัง และการพุ่งชนของอุกกาบาตเป็นกระบวนการที่เปลี่ยนโฉมผิวโลกอยู่เรื่อย ๆ ตามคาบเวลาทางธรณีวิทยา[92]
เปลือกโลกส่วนทวีปประกอบด้วยวัตถุความหนาแน่นต่ำอย่างเช่นหินอัคนีแกรนิตและแอนดีไซต์ ที่พบน้อยกว่าคือบะซอลต์ซึ่งเป็นหินภูเขาไฟความหนาแน่นสูงและเป็นองค์ประกอบหลักของพื้นมหาสมุทร[93] หินตะกอนซึ่งก่อตัวขึ้นจากการสะสมตัวของตะกอนที่ทับถมบีบอัดตัวเข้าด้วยกัน เกือบร้อยละ 75 ของพื้นผิวทวีปถูกปกคลุมด้วยหินตะกอนโดยคิดเป็นประมาณร้อยละ 5 ของเปลือกโลก[94] วัตถุหินที่พบบนโลกรูปแบบที่สามคือหินแปร ก่อกำเนิดโดยการแปรเปลี่ยนมาจากหินดั้งเดิมที่มีอยู่ก่อนผ่านความดันสูง หรืออุณหภูมิสูง หรือทั้งสองอย่าง แร่ซิลิเกตที่พบมากที่สุดบนผิวโลกประกอบด้วย ควอตซ์ เฟลด์สปาร์ แอมฟิโบล ไมกา ไพรอกซีน และโอลิวีน[95] แร่คาร์บอเนตที่พบทั่วไปประกอบด้วย แคลไซต์ (พบในหินปูน) และโดโลไมต์[96]
ระดับความสูงของพื้นผิวดินแตกต่างกันตั้งแต่จุดต่ำสุดที่ −418 เมตร ณ ทะเลเดดซี ไปจนถึงจุดสูงสุดที่ 8,848 เมตร ณ ยอดเขาเอเวอเรสต์ ค่าเฉลี่ยความสูงของพื้นดินเหนือระดับน้ำทะเลอยู่ที่ 797 เมตร[97]
เพโดสเฟียร์ (pedosphere) เป็นชั้นนอกสุดของพื้นผิวทวีปของโลก ประกอบด้วยดินและผ่านกระบวนการกำเนิดดิน ดินเพาะปลูกได้ทั้งหมดคิดเป็นร้อยละ 10.9 ของผิวดิน โดยร้อยละ 1.3 เป็นที่เพาะปลูกพืชผลถาวร[98][99] ผิวดินของโลกเกือบร้อยละ 40 ใช้เพื่อเกษตรกรรม หรือคิดเป็นประมาณ 16.7 ล้านตารางกิโลเมตรสำหรับการเพาะปลูก และประมาณ 33.5 ล้านตารางกิโลเมตรสำหรับทุ่งหญ้าเลี้ยงสัตว์[100]
อุทกภาค

ความอุดมของน้ำบนผิวโลกเป็นลักษณะเอกลักษณ์ซึ่งแยก "ดาวเคราะห์สีน้ำเงิน" ออกจากดาวเคราะห์อื่น ๆ ในระบบสุริยะ อุทกภาคของโลกประกอบด้วยมหาสมุทรเป็นส่วนใหญ่ ที่เหลือประกอบด้วยผิวน้ำทั้งหมดในโลกได้แก่ ทะเลในแผ่นดิน ทะเลสาบ แม่น้ำ น้ำใต้ดินลึกลงไป 2,000 เมตร ตำแหน่งใต้น้ำที่ลึกที่สุดคือ แชลเลนเจอร์ดีปบริเวณร่องลึกก้นสมุทรมาเรียนาในมหาสมุทรแปซิฟิก โดยมีความลึกที่ 10,911.4 เมตร[n 4][101]
มหาสมุทรรวมมีมวลคิดเป็นประมาณ 1.35แม่แบบ:E เมตริกตัน หรือราว 1 ใน 4,400 ของมวลทั้งหมดของโลก มหาสมุทรปกคลุมเป็นพื้นที่ แม่แบบ:Val โดยมีความลึกเฉลี่ย แม่แบบ:Val เป็นผลให้มีปริมาตรโดยประมาณเท่ากับ แม่แบบ:Val[102] หากพื้นผิวเปลือกโลกทั้งหมดมีความสูงเท่ากันคือกลมเสมอกันทั้งใบ โลกก็จะกลายเป็นมหาสมุทรทั้งหมดด้วยความลึกราว 2.7 ถึง 2.8 กิโลเมตร[103][104]
น้ำประมาณร้อยละ 97.5 เป็นน้ำเค็ม อีกร้อยละ 2.5 ที่เหลือเป็นน้ำจืด ส่วนใหญ่ของน้ำจืดหรือราวร้อยละ 68.7 อยู่ในรูปของน้ำแข็งในน้ำแข็งขั้วโลกและธารน้ำแข็งต่าง ๆ[105]
ค่าเฉลี่ยความเค็มของมหาสมุทรโลกอยู่ที่ประมาณ 35 กรัมเกลือต่อกิโลกรัมน้ำทะเล (มีเกลือร้อยละ 3.5)[106] เกลือส่วนมากถูกขับออกจากกัมมันตภาพภูเขาไฟหรือชะออกมาจากหินอัคนีเย็น[107] มหาสมุทรยังเป็นแหล่งสะสมของก๊าซในบรรยากาศที่ละลายได้ซึ่งมีความจำเป็นต่อการอยู่รอดของสิ่งมีชีวิตที่อาศัยในน้ำจำนวนมาก[108] น้ำทะเลถือว่ามีอิทธิพลสำคัญต่อภูมิอากาศโลกโดยมหาสมุทรเป็นแหล่งสะสมความร้อนขนาดใหญ่[109] การเปลี่ยนแปลงการกระจายของอุณหภูมิมหาสมุทรสามารถทำให้เกิดการเปลี่ยนแปลงของลมฟ้าอากาศอย่างสำคัญได้ เช่น เอลนีโญ–ความผันแปรของระบบอากาศในซีกโลกใต้[110]
บรรยากาศ

ความกดอากาศบนพื้นผิวโลกมีค่าเฉลี่ยที่ 101.325 กิโลปาสกาล คิดเป็นอัตราความสูงประมาณ 8.5 กิโลเมตร[111] มีองค์ประกอบเป็นธาตุไนโตรเจนร้อยละ 78 ธาตุออกซิเจนร้อยละ 21 รวมถึงไอน้ำ คาร์บอนไดออกไซด์ และก๊าซในรูปโมเลกุลชนิดอื่นปริมาณเล็กน้อย ความสูงของชั้นโทรโพสเฟียร์ผันแปรตามละติจูด มีพิสัยตั้งแต่ 8 กิโลเมตรที่บริเวณขั้วโลกไปจนถึง 17 กิโลเมตรที่เส้นศูนย์สูตร โดยมีความเบี่ยนเบนเล็กน้อยจากผลของสภาพอากาศและปัจจัยหลายประการตามฤดูกาล[112]
ชีวมณฑลของโลกส่งผลเปลี่ยนแปลงอย่างมีนัยสำคัญต่อบรรยากาศ การสังเคราะห์ด้วยแสงแบบสร้างออกซิเจนวิวัฒน์ขึ้นเมื่อราว 2.7 พันล้านปีก่อน ได้สร้างบรรยากาศที่มีไนโตรเจนและออกซิเจนเป็นหลักดังเช่นในปัจจุบัน[43] การเปลี่ยนแปลงนี้ทำให้สิ่งมีชีวิตที่ใช้ออกซิเจนสามารถแพร่กระจายได้ และมีผลโดยอ้อมเกิดการก่อรูปของชั้นโอโซนเนื่องากการเปลี่ยน O2 ในบรรยากาศเป็น O3 ชั้นโอโซนกั้นการแผ่รังสีอัลตราไวโอเลตจากดวงอาทิตย์ ทำให้สิ่งมีชีวิตสามารถเกิดขึ้นบนโลกได้ บรรยากาศยังทำหน้าที่อื่นที่สำคัญต่อสิ่งมีชีวิตได้แก่ การเคลื่อนย้ายไอน้ำ อำนวยก๊าซที่เป็นประโยชน์ ทำให้สะเก็ดดาวขนาดเล็กเผาไหม้ไปหมดก่อนที่จะกระทบพื้น และการปรับอุณหภูมิไม่ให้ร้อนหรือเย็นเกิน[113] ปรากฏการณ์สุดท้ายนี้เรียก ปรากฏการณ์เรือนกระจก โมเลกุลของก๊าซสัดส่วนเล็กน้อยภายในบรรยากาศทำหน้าที่กักเก็บพลังงานความร้อนที่แผ่ออกจากพื้นดินเป็นผลให้อุณหภูมิเฉลี่ยเพิ่มสูงขึ้น ไอน้ำ คาร์บอนไดออกไซด์ มีเทน และโอโซน เป็นแก๊สเรือนกระจกหลักในบรรยากาศ หากปราศจากปรากฏการณ์กักเก็บความร้อนนี้ อุณหภูมิเฉลี่ยที่พื้นผิวจะเป็น −18 องศาเซลเซียส เมื่อเทียบกับอุณหภูมิปัจจุบันที่ +15 องศาเซลเซียส[114] และอาจไม่มีสิ่งมีชีวิตบนโลกในรูปลักษณ์ปัจจุบัน[115]
ลมฟ้าอากาศและภูมิอากาศ
แม่แบบ:Main แม่แบบ:Multiple image บรรยากาศของโลกไม่มีขอบเขตชัดเจนโดยจะค่อย ๆ บางลงและเลือนหายไปสู่อวกาศ สามในสี่ของมวลบรรยากาศอยู่ในระยะ 11 กิโลเมตรแรกเหนือพื้นผิว มีชั้นล่างสุดเรียกโทรโพสเฟียร์ พลังงานจากดวงอาทิตย์จะทำให้ชั้นนี้รวมถึงพื้นผิวเบื้องล่างร้อนขึ้น ส่งผลให้อากาศเกิดการขยายตัว อากาศความหนาแน่นต่ำจะลอยขึ้น อากาศความหนาแน่นสูงกว่าและเย็นกว่าจะเข้ามาแทนที่ เกิดเป็นการหมุนเวียนของบรรยากาศซึ่งขับเคลื่อนสภาพอากาศและภูมิอากาศผ่านการกระจายพลังงานความร้อน[116]
แถบการหมุนเวียนของบรรยากาศหลักประกอบด้วยลมค้าในบริเวณศูนย์สูตรที่ละติจูดต่ำกว่า 30° และลมตะวันตก (westerlie) ในแถบละติจูดกลางระหว่าง 30° และ 60°[117] กระแสน้ำมหาสมุทรก็เป็นปัจจัยสำคัญที่กำหนดภูมิอากาศ โดยเฉพาะการหมุนเวียนเทอร์โมเฮไลน์ (thermohaline) ซึ่งกระจายพลังงานความร้อนจากมหาสมุทรแถบศูนย์สูตรไปยังบริเวณขั้วโลก[118]
ไอน้ำที่ระเหยจากพื้นผิวถูกรูปแบบไหลเวียนในบรรยากาศเคลื่อนย้ายไป เมื่อภาวะของบรรยากาศทำให้อากาศร้อนชื้นยกตัวสูงขึ้น น้ำนี้จะควบแน่นและตกลงสู่พื้นผิวในรูปหยาดน้ำฟ้า[116] น้ำส่วนใหญ่จะเคลื่อนย้ายไปยังที่ที่ต่ำกว่าผ่านระบบแม่น้ำและปกติกลับคืนสู่มหาสมุทรหรือไม่ก็สะสมอยู่ในทะเลสาบ วัฏจักรของน้ำนี้เป็นกลไกสำคัญที่ค้ำจุนสรรพชีวิตบนผืนแผ่นดิน และเป็นปัจจัยหลักในการกัดเซาะโครงสร้างภูมิประเทศตามสสมัยธรณีวิทยา รูปแบบของหยาดน้ำฟ้ามีความหลากหลายตั้งแต่ปริมาณน้ำหลายเมตรไปจนถึงเพียงไม่กี่มิลลิเมตรต่อปี ทั้งการหมุนเวียนของบรรยากาศ ภูมิลักษณ์ และความแตกต่างของอุณหภูมิล้วนกำหนดหยาดน้ำฟ้าเฉลี่ยที่ตกในแต่ละบริเวณ[119]
ปริมาณพลังงานจากดวงอาทิตย์ที่มาถึงพื้นผิวโลกลดลงตามละติจูดที่สูงขึ้น ที่ละติจูดสูง ๆ แสงจากดวงอาทิตย์มาถึงพื้นผิวด้วยมุมที่ต่ำลง และต้องส่องผ่านแนวหนาแน่นของบรรยากาศ เป็นผลให้อุณหภูมิของอากาศเฉลี่ยตลอดทั้งปีที่ระดับน้ำทะเลลดลงราว 0.4 องศาเซลเซียสทุก ๆ หนึ่งองศาของละติจูดที่ออกห่างจากเส้นศูนย์สูตร[120] พื้นผิวโลกสามารถแบ่งย่อยได้เป็นแถบละติจูดจำเพาะที่มีภูมิอากาศเช่นเดียวกันโดยประมาณ อาณาเขตตั้งแต่เส้นศูนย์สูตรไปจนถึงบริเวณขั้วโลกจำแนกออกเป็นภูมิอากาศเขตร้อนหรือเขตศูนย์สูตร เขตใกล้เขตร้อน เขตอบอุ่น และเขตขั้วโลก[121]
กฎละติจูดนี้มีความผิดปกติหลายอย่าง
- การอยู่ใกล้มหาสมุทรจะทำให้ภูมิอากาศไม่รุนแรง ตัวอย่างเช่น คาบสมุทรสแกนดิเนเวียมีภูมิอากาศไม่รุนแรงเมื่อเทียบกับทางเหนือของประเทศแคนาดาที่ละติจูดเหนือคล้ายกัน
- ลมยังช่วยบรรเทาผลนี้ แผ่นดินฝั่งปะทะลมมีภูมิอากาศไม่รุนแรงเมื่อเทียบกับฝั่งอับลม ในซีกโลกเหนือ ลมแน่ทิศมีทิศทางตะวันตกไปตะวันออก และชายฝั่งตะวันตกมักมีภูมิอากาศไม่รุนแรงเมื่อเทียบกับชายฝั่งตะวันออก ซึ่งสังเกตได้ในทวีปอเมริกาเหนือฝั่งตะวันออกและยุโรปตะวันตก ซึ่งภูมิอากาศแบบทวีปที่รุนแรงปรากฏในชายฝั่งตะวันออกเทียบกับภูมิอากาศไม่รุนแรงที่อีกฟากหนึ่งของมหาสมุทร[122] ในซีกโลกใต้ ลมแน่ทิศพัดจากทิศตะวันออกไปตะวันตก และชายฝั่งตะวันออกมีภูมิอากาศไม่รุนแรง
- ระยะทางจากโลกถึงดวงอาทิตย์มีความแปรผัน โลกอยู่ใกล้ดวงอาทิตย์ที่สุดในเดือนมกราคมซึ่งตรงกับฤดูร้อนในซีกโลกใต้ อยู่ห่างจากดวงอาทิตย์มากที่สุดในเดือนกรกฎาคมซึ่งตรงกับฤดูร้อนในซีกโลกเหนือ และรังสีจากดวงอาทิตย์ตกสู่พื้นที่หนึ่ง ๆ ประมาณร้อยละ 93.55 เมื่อเทียบกับจุดใกล้ดวงอาทิตย์ที่สุด แต่ซีกโลกเหนือมีแผ่นดินมากกว่าจึงได้รับความร้อนง่ายกว่าทะเล ผลทำให้ฤดูร้อนในซีกโลกเหนือมีอุณหภูมิสูงกว่าซีกโลกใต้ในภาวะคล้ายกัน 2.3 องศาเซลเซียส[123]
- ภูมิอากาศในที่สูงเย็นกว่าระดับน้ำทะเลเนื่องจากความหนาแน่นของอากาศเบาบางกว่า
ระบบการแบ่งเขตภูมิอากาศแบบเคิปเปนที่ใช้บ่อยมีห้ากลุ่มใหญ่ (ร้อยชื้น แห้งแล้ง ชื้นละติจูดกลาง ทวีป และหนาวขั้วโลก) ซึ่งแบ่งเป็นภูมิอากาศย่อยที่จำเพาะมากขึ้นได้อีกหลายแบบ[117] ระบบเคิปเปนจัดภูมิอากาศเขตต่าง ๆ ตามอุณหภูมิและหยาดน้ำฟ้าที่สังเกต
บรรยากาศเบื้องบน

เหนือชั้นโทรโพสเฟียร์ขึ้นไป บรรยากาศแบ่งโดยทั่วไปได้เป็นชั้นสตราโทสเฟียร์ มีโซสเฟียร์ และเทอร์โมสเฟียร์[113] แต่ละชั้นมีอัตราการเหลื่อมซ้อนไม่เท่ากันซึ่งกำหนดจากอัตราการเปลี่ยนแปลงอุณหภูมิตามระดับความสูง พ้นจากชั้นเหล่านี้ขึ้นไปเรียกว่าเอกโซสเฟียร์ ซึ่งบางลงเรื่อย ๆ ไปจนถึงแม็กนีโตสเฟียร์ซึ่งเป็นบริเวณที่สนามธรณีแม่เหล็กกระทบกันกับลมสุริยะ[124] ภายในชั้นสตราโทสเฟียร์มีชั้นโอโซนซึ่งเป็นองค์ประกอบที่มีส่วนช่วยป้องกันพื้นผิวโลกจากรังสีอัลตราไวโอเล็ตอันมีความสำคัญยิ่งต่อสรรพชีวิตบนโลก มีการกำหนดเส้นคาร์มานที่ระดับ 100 กิโลเมตรเหนือผิวโลกเป็นบทนิยามในทางปฏิบัติที่แบ่งขอบเขตระหว่างบรรยากาศและอวกาศ[125]
พลังงานความร้อนทำให้โมเลกุลบางส่วนที่ขอบนอกของบรรยากาศมีความเร็วเพิ่มสูงขึ้นจนถึงจุดหนึ่งที่สามารถหลุดพ้นออกจากแรงโน้มถ่วงของโลกได้ ด้วยเหตุนี้จึงทำให้เกิดการเสียบรรยากาศออกสู่อวกาศอย่างช้า ๆ แต่สม่ำเสมอ เพราะไฮโดรเจนที่ไม่ได้ถูกยึดเหนี่ยวมีมวลโมเลกุลต่ำจึงสามารถขึ้นถึงความเร็วหลุดพ้นได้ง่ายกว่าและรั่วไหลออกสู่อวกาศภายนอกในอัตราที่สูงกว่าแก๊สอื่น[126] การรั่วของไฮโดรเจนสู่อวกาศได้ช่วยสนับสนุนให้บรรยากาศโลกตลอดจนพื้นผิวเกิดการเปลี่ยนผันจากภาวะรีดิวซ์ในช่วงต้นมาเป็นภาวะออกซิไดซ์อย่างเช่นในปัจจุบัน การสังเคราะห์ด้วยแสงเป็นแหล่งช่วยป้อนออกซิเจนอิสระ แต่ด้วยการเสียไปซึ่งสารรีดิวซ์ดังเช่นไฮโดรเจนนี้เองจึงเชื่อกันว่าเป็นภาวะเริ่มต้นที่จำเป็นต่อการเพิ่มพูนขึ้นของออกซิเจนอย่างกว้างขวางในบรรยากาศ[127] การที่ไฮโดรเจนสามารถหนีออกไปจากบรรยากาศได้จึงอาจส่งอิทธิพลต่อธรรมชาติของชีวิตที่พัฒนาขึ้นบนโลก[128] ในบรรยากาศที่มีออกซิเจนเป็นจำนวนมากในปัจจุบันนั้น ไฮโดรเจนส่วนใหญ่ถูกเปลี่ยนเป็นน้ำก่อนมีโอกาสหนีออกไป แต่การเสียไฮโดรเจนส่วนใหญ่นั้นมาจากการสลายของมีเทนในบรรยากาศชั้นบน[129]
สนามความโน้มถ่วง

ความโน้มถ่วงของโลกเป็นความเร่งที่ถ่ายทอดแก่วัตถุเนื่องจากการกระจายของมวลในโลก ความเร่งความโน้มถ่วงใกล้ผิวโลกมีค่าประมาณ 9.8 เมตรต่อวินาที2 ความแตกต่างท้องถิ่นของภูมิลักษณ์ ธรณีวิทยาและโครงสร้างแปรสัณฐานที่อยู่ลึกลงไปทำให้เกิดความแตกต่างท้องถิ่นและภูมิภาคเป็นวงกว้างในสนามความโน้มถ่วงของโลก เรียก ค่าผิดปกติของความโน้มถ่วง[130]
สนามแม่เหล็ก
แม่แบบ:Main ส่วนหลักของสนามแม่เหล็กโลกสร้างขึ้นในแก่น ซึ่งเป็นที่ตั้งของกระบวนการไดนาโมอันเปลี่ยนพลังจลน์ของการเคลื่อนพาของไหลไปเป็นพลังงานไฟฟ้าและพลังงานสนามแม่เหล็ก ตัวสนามแผ่ออกจากบริเวณแก่นผ่านชั้นเนื้อโลกและขึ้นสู่ผิวโลกอันเป็นตำแหน่งที่ประมาณได้อย่างหยาบ ๆ เป็นแม่เหล็กขั้วคู่ ขั้วของแม่เหล็กขั้วคู่มีตำแหน่งใกล้เคียงกับขั้วโลกภูมิศาสตร์ ที่เส้นศูนย์สูตรของสนามแม่เหล็กมีความเข้มสนามแม่เหล็กที่พื้นผิวเท่ากับ แม่แบบ:Nowrap และมีโมเมนต์ขั้วคู่แม่เหล็กโลกที่ แม่แบบ:Nowrap[131] การเคลื่อนที่พาในแก่นนั้นมีความยุ่งเหยิงทำให้ขั้วแม่เหล็กมีการเขยื้อนและเปลี่ยนแปลงแนวการวางตัวเป็นระยะ ๆ เป็นสาเหตุของการกลับขั้วสนามแม่เหล็กตามช่วงเวลาอย่างไม่สม่ำเสมอเฉลี่ยไม่กี่ครั้งในทุก ๆ ล้านปี โดยการกลับขั้วครั้งล่าสุดเกิดขึ้นเมื่อราว แม่แบบ:Nowrap[132][133]
แม็กนีโตสเฟียร์

ขอบเขตของสนามแม่เหล็กโลกในอวกาศกำหนดขอบเขตของแม็กนีโตสเฟียร์ (magnetosphere) ไอออนและอิเล็กตรอนจากลมสุริยะถูกแม็กนีโตสเฟียร์เบี่ยงเบน ความดันจากลมสุริยะบีบฝั่งกลางวันของแม็กนีโตสเฟียร์ไปประมาณ 10 รัศมีโลก และทำให้ด้านกลางคืนของแม็กนีโตสเฟียร์ยืดขยายออกเป็นหางยาว[134] ด้วยเหตุที่ความเร็วของลมสุริยะสูงกว่าความเร็วของคลื่นที่แผ่ออกจากลมสุริยะมาก จึงเกิดโบว์ช็อค (bowshock) เหนือเสียงในส่วนหน้าด้านกลางวันของแม็กนีโตสเฟียร์ภายในลมสุริยะ[135] อนุภาคมีประจุถูกกักเก็บอยู่ในแม็กนีโตสเฟียร์ พลาสมาสเฟียร์ (plasmasphere) กำหนดเป็นอนุภาคหลังงานต่ำที่ตามเส้นสนามแม่เหล็กเมื่อโลกหมุน[136][137] กระแสวง (ring current) กำหนดโดยอนุภาคพลังงานปานกลางซึ่งเคลื่อนไปสัมพัทธ์กับสนามธรณีแม่เหล็กแต่ยังมีเส้นทางที่ยังอยู่ภายใต้อิทธิพลของสนามแม่เหล็กเป็นหลัก[138] และแถบเข็มขัดรังสีแวนอัลเลนซึ่งเกิดจากอนุภาคพลังงานสูงที่เคลื่อนที่อย่างสุ่มเสียมากแต่ยังอยู่ภายในแม็กนีโตสเฟียร์[134][139]
ระหว่างการเกิดพายุแม่เหล็ก อนุภาคมีประจุสามารถเบี่ยงทิศทางจากแม็กนีโตสเฟียร์ส่วนนอกเข้ามาในชั้นไอโอโนสเฟียร์ของโลกได้โดยตรงตามแนวเส้นสนาม ซึ่งในบริเวณนี้อะตอมที่อยู่ในบรรยากาศสามารถถูกกระตุ้นและกลายเป็นประจุอันเป็นสาเหตุของการเกิดออโรรา[140]
วงโคจรและการหมุนรอบตัวเอง
การหมุน

คาบการหมุนรอบตัวเองของโลกสัมพัทธ์กับดวงอาทิตย์หรือวันสุริยคตินั้นเท่ากับ แม่แบบ:Valของเวลาสุริยคติกลาง (แม่แบบ:Valเอสไอ)[141] เพราะวันสุริยะของโลกในปัจจุบันยาวกว่าวันในช่วงกลางคริสต์ศตวรรษที่ 19 เล็กน้อยอันเนื่องมาจากผลความเร่งน้ำขึ้นลง ในแต่ละวันจึงยาวขึ้นผันแปรไประหว่าง 0 ถึง 2 มิลลิวินาที เอสไอ[142][143]
คาบการหมุนรอบตัวเองของโลกสัมพัทธ์กับดาวฤกษ์ไม่เคลื่อนที่เรียกว่าวันดาราคติ โดยหน่วยงานการหมุนของโลกและระบบอ้างอิงสากล (IERS: International Earth Rotation and Reference Systems Service) คือ แม่แบบ:Nowrap จากเวลาสุริยคติกลาง (ยูที (เวลาสากล) 1) หรือ แม่แบบ:Nowrap[144][n 5] คาบการหมุนรอบตัวเองของโลกสัมพัทธ์กับการหมุนควงหรือการเคลื่อนที่เฉลี่ยของจุดวสันตวิษุวัตมักเรียกว่า วันดาวฤกษ์ คือ แม่แบบ:Nowrap จากเวลาสุริยคติกลาง (ยูที1) หรือ แม่แบบ:Nowrap ณ ปี ค.ศ. 1982[144] ดังนั้นเองวันดาวฤกษ์จึงสั้นกว่าวันดาราคติประมาณ 8.4 มิลลิวินาที[145] ความยาวของเวลาสุริยคติกลางในหน่วยวินาทีเอสไอสามารถนำมาใช้อ้างอิงได้จากหน่วยงานไออีอาร์เอสสำหรับช่วงเวลาจากปี ค.ศ. 1623–2005[146] และปี ค.ศ. 1962–2005[147]
ต่างจากดาวตกในบรรยากาศและดาวเทียมวงโคจรต่ำต่าง ๆ เทหฟ้าโดยมากมีการเคลื่อนที่ปรากฏไปทางด้านตะวันตกของท้องฟ้าของโลกในอัตรา 15 องศาต่อชั่วโมง หรือ 15 ลิปดาต่อนาที สำหรับวัตถุที่อยู่ใกล้กับเส้นศูนย์สูตรฟ้าจะเคลื่อนไปเทียบเท่ากับเส้นผ่านศูนย์กลางปรากฏของดวงอาทิตย์หรือดวงจันทร์ในทุก ๆ สองนาที เมื่อมองจากพื้นโลกขนาดปรากฏโดยประมาณของดวงอาทิตย์และดวงจันทร์นั้นถือว่าเท่ากัน[148][149]
วงโคจร

โลกโคจรรอบดวงอาทิตย์ด้วยระยะห่างเฉลี่ยประมาณ 150 ล้านกิโลเมตรในทุก ๆ แม่แบบ:Nowrap หรือหนึ่งปีดาวฤกษ์ ส่งผลให้การเคลื่อนที่ปรากฏของดวงอาทิตย์คล้อยไปทางตะวันออกเทียบกับดาวฤกษ์ฉากหลังในอัตราราวหนึ่งองศาต่อวัน หรือเทียบเท่าขนาดปรากฏของดวงอาทิตย์หรือดวงจันทร์ในทุก ๆ 12 ชั่วโมง การเคลื่อนไปเช่นนี้ใช้เวลาเฉลี่ยราว 24 ชั่วโมงหรือหนึ่งวันสุริยะสำหรับการหมุนรอบตัวเองตามแกนครบหนึ่งรอบของโลกซึ่งดวงอาทิตย์กลับสู่เมอริเดียนอีกครั้ง ความเร็วของโลกในวงโคจรโดยเฉลี่ยประมาณ แม่แบบ:Nowrap แม่แบบ:Nowrap ซึ่งเร็วมากพอที่จะเคลื่อนผ่านระยะทางเท่ากันกับเส้นผ่านศูนย์กลางของโลกที่ประมาณ แม่แบบ:Nowrapในเจ็ดนาที และผ่านระยะทางถึงดวงจันทร์ที่ประมาณ แม่แบบ:Nowrap ในเวลาราว 3.5 ชั่วโมง[111]
โลกและดวงจันทร์โคจรรอบจุดศูนย์กลางมวลร่วมในทุก ๆ 27.32 วัน สัมพัทธ์กับดาวฤกษ์พื้นหลัง เมื่อประกอบกันเข้ากับวงโคจรร่วมโลก–ดวงจันทร์รอบดวงอาทิตย์แล้ว เกิดเป็นคาบของเดือนจันทรคตินับจากอมาวสีหนึ่งไปอีกอมาวสีหนึ่งราว 29.53 วัน เมื่อมองจากขั้วฟ้าเหนือ การเคลื่อนที่ของโลก ดวงจันทร์ และการหมุนรอบแกนดาวของทั้งคู่ล้วนเป็นไปในทิศทวนเข็มนาฬิกา เมื่อมองจากจุดสูงเหนือขั้วเหนือของทั้งดวงอาทิตย์และโลก วงโคจรของโลกจะมีทิศทางทวนเข็มนาฬิการอบดวงอาทิตย์ วงโคจรและระนาบแกนไม่ได้วางตัวอยู่ในแนวเดียวกันโดยแกนหมุนของโลกมีการเอียงประมาณ 23.4 องศาจากแนวตั้งฉากกับระนาบโคจรของโลกรอบดวงอาทิตย์ (หรือสุริยวิถี) และระนาบโคจรของดวงจันทร์รอบโลกเอียง ±5.1 องศาเทียบกับระนาบโลก–ดวงอาทิตย์ หากปราศจากการเอียงเช่นนี้ จะเกิดอุปราคาทุกสองสัปดาห์สลับกันระหว่างจันทรุปราคาและสุริยุปราคา[111][150]
ทรงกลมฮิลล์หรือทรงกลมอิทธิพลโน้มถ่วงของโลกมีรัศมีประมาณ 1.5×106 กิโลเมตร[151][n 6] เป็นระยะทางสูงสุดที่แรงโน้มถ่วงของโลกมีอิทธิพลเหนือกว่าดวงอาทิตย์และดาวเคราะห์อื่นที่อยู่ห่างออกไป วัตถุใด ๆ ในรัศมีนี้จะโคจรรอบโลก หรือไม่ก็หลุดลอยออกไปโดยการรบกวนเชิงโน้มถ่วงจากดวงอาทิตย์
โลกรวมทั้งระบบสุริยะทั้งหมดนั้นตั้งอยู่ในดาราจักรทางช้างเผือก และโคจรด้วยระยะห่างประมาณ 28,000 ปีแสงจากศูนย์กลางดาราจักร อยู่ในแขนเกลียวนายพรานเหนือกว่าระนาบดาราจักรประมาณ 20 ปีแสง[152]
การเอียงของแกนโลกและฤดูกาล

แกนโลกเอียงประมาณ 23.439281° เทียบกับแกนของระนาบโคจร[144] โดยจะชี้ไปขั้วฟ้าเสมอ เนื่องจากความเอียงของแกนโลก ปริมาณแสงอาทิตย์ที่ตกกระทบจุดใด ๆ บนพื้นผิวจึงผันแปรไปตามแต่ละช่วงของปี ก่อให้เกิดการเปลี่ยนฤดูกาลในแต่ละภูมิอากาศโดยฤดูร้อนในซีกโลกเหนือจะเกิดขึ้นเมื่อทรอปิกออฟแคนเซอร์หันเข้าหาดวงอาทิตย์ ส่วนฤดูหนาวเกิดเมื่อทรอปิกออฟแคปริคอนในซีกโลกใต้หันเข้าหาดวงอาทิตย์ ในระหว่างฤดูร้อน กลางวันจะยาวกว่าและดวงอาทิตย์จะมีตำแหน่งสูงขึ้นบนท้องฟ้า ส่วนในฤดูหนาว ภูมิอากาศจะเย็นลงและกลางวันจะสั้นลง ในละติจูดเขตอบอุ่นทางเหนือดวงอาทิตย์จะขึ้นเหนือกว่าทิศตะวันออกจริงระหว่างครีษมายันและลับฟ้าเหนือกว่าทิศตะวันตกจริง (กลับกันในฤดูหนาว) ในช่วงฤดูร้อนของเขตอบอุ่นในซีกโลกใต้ดวงอาทิตย์จะขึ้นใต้กว่าทิศตะวันออกจริงและลับฟ้าไปใต้กว่าทิศตะวันตกจริง
เหนืออาร์กติกเซอร์เคิลขึ้นไปจะมีกรณีสุดขั้วหนึ่งโดยที่ตลอดช่วงหนึ่งของปีจะไม่มีแสงอาทิตย์ส่องถึงเลย ซึ่งนานสุดหกเดือนเต็ม ณ ขั้วโลกเหนือพอดี เรียกว่ากลางคืนขั้วโลก ส่วนในซีกโลกใต้สถานการณ์จะกลับตรงกันข้ามโดยการที่ขั้วโลกใต้วางตัวในแนวตรงข้ามกับขั้วโลกเหนือ อีกหกเดือนให้หลัง ขั้วโลกเหนือจะเกิดอาทิตย์เที่ยงคืน คือเป็นกลางวันตลอด 24 ชั่วโมง กลับกับขั้วโลกใต้
โดยข้อตกลงทางดาราศาสตร์ ฤดูกาลทั้งสี่นั้นกำหนดโดยอายันซึ่งเป็นจุดในวงโคจรที่แกนโลกเอียงเข้าหาหรือออกจากดวงอาทิตย์มากที่สุด และวิษุวัตซึ่งเป็นจุดที่ทิศทางการเอียงของแกนกับทิศทางสู่ดวงอาทิตย์ตั้งฉากกัน สำหรับซีกโลกเหนือเหมายันจะเกิดขึ้นประมาณวันที่ 21 ธันวาคม ครีษมายันเกิดขึ้นใกล้กับวันที่ 21 มิถุนายน วสันตวิษุวัตเกิดขึ้นราววันที่ 20 มีนาคม และศารทวิษุวัตจะประมาณวันที่ 23 กันยายน สำหรับซีกโลกใต้สถานการณ์จะกลับกันโดยวันที่เกิดครีษมายันกับเหมายันและวสันตวิษุวัตกับศารทวิษุวัตจะสลับกัน[153]
มุมการเอียงของแกนโลกถือว่าค่อนข้างเสถียรมาช้านาน ความเอียงของแกนยังมีการส่ายซึ่งเป็นการเคลื่อนที่ขึ้นลงเล็กน้อยอย่างไม่สม่ำเสมอโดยมีคาบหลักราว 18.6 ปี[154] ทิศทางการวางตัวของแกนโลก (นอกเหนือจากมุมเอียงแล้ว) ยังมีการเปลี่ยนแปลงตลอดเวลาในลักษณะการหมุนควงโดยครบรอบวัฏจักรในทุก ๆ เวลาประมาณ แม่แบบ:Nowrap ลักษณะการหมุนควงนี้เป็นสาเหตุที่ทำให้ปีดาวฤกษ์กับปีฤดูกาลแตกต่างกัน การเคลื่อนที่ทั้งสองรูปแบบดังกล่าวเกิดขึ้นโดยความดึงดูดที่ผันแปรไปของดวงอาทิตย์และดวงจันทร์ที่กระทำต่อส่วนโป่งบริเวณศูนย์สูตรของโลก ขั้วโลกทั้งคู่ยังมีการเคลื่อนตำแหน่งได้หลายเมตรไปมาตามพื้นผิวโลก การเคลื่อนของขั้วนี้ประกอบกันขึ้นจากวัฏจักรที่หลากหลายซึ่งเรียกรวม ๆ กันว่าการเคลื่อนกึ่งคาบ ตัวอย่างการเคลื่อนลักษณะนี้ซึ่งเกิดเป็นประจำด้วยวัฏจักรประมาณ 14 เดือนก็คือการส่ายแชนด์เลอร์ (Chandler wobble) อัตราเร็วในการหมุนรอบตัวเองของโลกยังผันแปรไปตามปรากฏการณ์ต่าง ๆ รู้จักกันในชื่อการผันแปรความยาวของวัน[155]
ในสมัยปัจจุบัน จุดใกล้ดวงอาทิตย์ที่สุดของโลกเกิดขึ้นประมาณวันที่ 3 มกราคม และจุดไกลดวงอาทิตย์ที่สุดเกิดขึ้นประมาณวันที่ 4 กรกฎาคม สองวันนี้เปลี่ยนแปลงตลอดอันเนื่องมาจากการเคลื่อนถอยของวิษุวัตและปัจจัยของวงโคจรอย่างอื่น ซึ่งเป็นไปตามแบบแผนเป็นรอบ ๆ เรียก วัฏจักรมิลานโควิตช์ การเปลี่ยนแปลงระยะห่างระหว่างโลกกับดวงอาทิตย์ทำให้พลังงานจากดวงอาทิตย์มาถึงโลกเพิ่มขึ้น ณ จุดใกล้ดวงอาทิตย์ที่สุดเทียบกับจุดไกลดวงอาทิตย์ที่สุดประมาณร้อยละ 6.9[n 7] เพราะซีกโลกใต้มีการเอียงเข้าหาดวงอาทิตย์ในเวลาใกล้เคียงกันกับตำแหน่งที่โลกเดินทางเข้ามาใกล้ดวงอาทิตย์ที่สุด ซีกโลกใต้จึงได้รับพลังงานจากดวงอาทิตย์มากกว่าที่ซีกโลกเหนือได้รับเล็กน้อยตลอดช่วงเวลาของปี ผลที่เป็นอยู่นี้มีนัยสำคัญน้อยกว่าการเปลี่ยนแปลงพลังงานอันเนื่องมาจากความเอียงของแกนอยู่มาก และส่วนใหญ่ของพลังงานส่วนเกินที่ได้รับมาจะถูกดูดซับไปโดยน้ำอันเป็นพื้นที่ส่วนใหญ่ของซีกโลกใต้[156]
ถิ่นที่อยู่อาศัยได้

ดาวเคราะห์ที่สามารถค้ำจุนต่อสิ่งมีชีวิตได้ เรียกว่า ดาวเคราะห์อยู่อาศัยได้ โดยไม่จำเป็นว่าสิ่งมีชีวิตจะต้องกำเนิดจากดาวเคราะห์นั้น โลกมีน้ำในรูปของเหลว ซึ่งเป็นสิ่งแวดล้อมที่โมเลกุลสารอินทรีย์ซับซ้อนสามารถรวมตัวกันหรือมีอันตรกิริยาต่อกันได้ และมีพลังงานเพียงพอค้ำจุนเมแทบอลิซึม[157] ระยะทางจากโลกถึงดวงอาทิตย์ตลอดจนความเยื้องศูนย์กลางของวงโคจร อัตราการหมุนรอบตัวเอง ความเอียงของแกนดาว ประวัติศาสตร์ธรณีวิทยา การมีชั้นบรรยากาศคอยค้ำจุน และมีสนามแม่เหล็ก ทั้งหมดล้วนเกื้อหนุนให้เกิดสภาพภูมิอากาศที่พื้นผิวดังเช่นในปัจจุบัน[158]
ชีวมณฑล
แม่แบบ:Main บ้างมีการกล่าวถึงรูปแบบสิ่งชีวิตต่าง ๆ บนดาวเคราะห์ว่าประกอบขึ้นเป็น "ชีวมณฑล" เชื่อกันทั่วไปว่าชีวมณฑลของโลกเริ่มวิวัฒน์ขึ้นเมื่อประมาณ 3.5 พันล้านปีก่อน[43] จำแนกได้เป็นชีวนิเวศต่าง ๆ กัน ที่มีพืชและสัตว์ต่าง ๆ ที่คล้ายคลึงกันกว้าง ๆ อยู่อาศัย ชีวนิเวศบนดินแบ่งตามหลักใหญ่ได้ตามละติจูด ความสูงจากระดับน้ำทะเล และระดับความชื้นต่าง ๆ ส่วนชีวนิเวศบกที่อยู่ในบริเวณอาร์กติกหรือแอนตาร์กติกเซอร์เคิล, ที่ที่มีระดับความสูงมาก หรือในพื้นที่แล้งสุดขั้ว มีพืชและสัตว์เพียงเล็กน้อย ความหลากหลายของสปีชีส์จะสูงสุดในพื้นที่ลุ่มชื้นบริเวณละติจูดศูนย์สูตร[159]
ทรัพยากรธรรมชาติและการใช้พื้นที่
| การใช้พื้นที่ | ล้านเฮกตาร์ |
|---|---|
| เพาะปลูก | 1,510–1,611 |
| ทุ่งหญ้า | 2,500–3,410 |
| ป่าธรรมชาติ | 3,143–3,871 |
| ป่าปลูก | 126–215 |
| พื้นที่เมือง | 66–351 |
| ที่ดินก่อประโยชน์ได้แต่ไม่ใช้ | 356–445 |
โลกมีทรัพยากรหลากหลายซึ่งมนุษย์แสวงหาประโยชน์ ทรัพยากรที่เรียก ทรัพยากรไม่หมุนเวียน เช่น เชื้อเพลิงซากดึกดำบรรพ์ จะมีทดแทนตามเวลาทางธรณีวิทยาเท่านั้น
เชื้อเพลิงซากดึกดำบรรพ์ปริมาณมากที่ถูกกักเก็บสามารถขุดเจาะได้จากเปลือกโลก ประกอบด้วยถ่านหิน ปิโตรเลียม และก๊าซธรรมชาติ มนุษย์ใช้เชื้อเพลิงเหล่านี้ทั้งเพื่อการผลิดพลังงานและเป็นวัตถุดิบตั้งต้นในอุตสาหกรรมเคมี เนื้อสินแร่จำนวนมากยังก่อตัวขึ้นภายในเปลือกโลกผ่านกระบวนการกำเนิดแร่ อันเป็นผลจากการปะทุของหินหลอมเหลว การกัดเซาะ และการแปรสัณฐานแผ่นธรณีภาค[161] วัตถุเหล่านี้เป็นแหล่งเนื้อแร่ของโลหะหลายชนิดตลอดจนธาตุมีประโยชน์อื่น
ชีวภาคของโลกก่อกำเนิดผลิตภัณฑ์ชีวภาพหลายชนิดที่เป็นประโยชน์ต่อมนุษย์ ประกอบด้วยอาหาร ไม้ ยารักษาโรค ออกซิเจน และช่วยรีไซเคิลของเสียอินทรีย์จำนวนมาก ระบบนิเวศบนบกต้องอาศัยหน้าดินและน้ำจืด ในขณะที่ระบบนิเวศมหาสมุทรต้องอาศัยสารอาหารที่ละลายในน้ำซึ่งถูกชะมาจากแผ่นดิน[162] ในปี 1980 พื้นดินของโลก แม่แบบ:Val (50.53 ล้านตารางกิโลเมตร) เป็นพื้นที่ป่าและต้นไม้ แม่แบบ:Val (67.88 ล้านตารางกิโลเมตร) เป็นทุ่งหญ้าและทุ่งหญ้าเลี้ยงสัตว์ และ แม่แบบ:Val (15.01 ล้านตารางกิโลเมตร) เป็นพื้นที่เกษตรกรรมเพาะปลูก[163] จำนวนพื้นที่ชลประทานโดยประมาณในปี 1993 อยู่ที่ แม่แบบ:Val (แม่แบบ:Val)[164] มนุษย์ยังดำรงชีวิตบนพื้นดินโดยใช้วัสดุก่อสร้างขนิดต่าง ๆ ก่อสร้างที่พักอยู่อาศัย
อันตรายทางธรรมชาติและสิ่งแวดล้อม

พื้นที่บริเวณกว้างบนพื้นผิวโลกเผชิญสภาพอากาศร้ายแรง เช่น พายุหมุนเขตร้อน เฮอริเคน หรือไต้ฝุ่นซึ่งครอบงำสิ่งมีชีวิตในพื้นที่เหล่านั้น ระหว่างปี 1980 ถึง 2000 ภัยธรรมชาติดังกล่าวเป็นสาเหตุทำให้มีผู้เสียชีวิตโดยเฉลี่ย 11,800 รายต่อปี[165] ในหลายที่ยังต้องประสบกับแผ่นดินไหว แผ่นดินถล่ม สึนามิ ภูเขาไฟระเบิด ทอร์นาโด หลุมยุบ พายุหิมะ น้ำท่วม ภัยแล้ง ไฟป่า และหายนะภัยหรือพิบัติภัยอื่น ๆ
พื้นที่ท้องถิ่นหลายแห่งยังได้รับผลกระทบจากมลพิษทั้งทางน้ำและอากาศอันมีสาเหตุจากมนุษย์ ฝนกรดและสารพิษนานาชนิด การเสียพื้นที่สีเขียว (การทำปศุสัตว์มากเกินไป การทำลายป่า การเกิดทะเลทราย) การสูญเสียสัตว์ป่า การสูญพันธุ์ของสปีชีส์ ดินเสื่อมคุณภาพ ดินถูกทำลายและการกัดเซาะ
มีความเห็นพ้องทางวิทยาศาสตร์ที่เชื่อมโยงกิจกรรมของมนุษย์กับปรากฏการณ์โลกร้อนอันเนื่องมาจากการปล่อยคาร์บอนไดออกไซด์จากภาคอุตสาหกรรม นำไปสู่การคาดคะเนความเปลี่ยนแปลงต่าง ๆ เช่น การละลายของธารน้ำแข็งและพืดน้ำแข็ง พิสัยอุณหภูมิที่รุนแรงมากขึ้น การเปลี่ยนแปลงอย่างสำคัญของลมฟ้าอากาศและการเพิ่มของระดับน้ำทะเลปานกลางทั่วโลก[166] แม่แบบ:Clear
ภูมิศาสตร์มนุษย์


วิชาการเขียนแผนที่ซึ่งทำการศึกษาและสร้างแผนที่ในเชิงปฏิบัติ วิชาภูมิศาสตร์ซึ่งทำการศึกษาพื้นที่ ภูมิประเทศ ผู้อยู่อาศัย และปรากฏการณ์ต่าง ๆ บนโลก ล้วนมีประวัติศาสตร์อันแข็งขันที่อุทิศแก่การพรรณนาโลก วิศวกรรมสำรวจซึ่งทำการกำหนดที่ตั้งและระยะทาง ตลอดจนขอบเขตอีกบางส่วนจากการเดินเรืออันต้องกำหนดตำแหน่งและทิศทาง ก็ได้มีการพัฒนาขึ้นร่วมไปกับวิชาการเขียนแผนที่และภูมิศาสตร์ ทั้งหมดนั้นได้อำนวยและให้ปริมาณข้อสนเทศที่จำเป็นได้อย่างเหมาะสม
จำนวนประชากรมนุษย์บนโลกได้เพิ่มขึ้นถึงเจ็ดพันล้านคนโดยประมาณในวันที่ 31 ตุลาคม 2011[168] ผลการคาดคะเนชี้ว่าประชากรมนุษย์บนโลกจะเพิ่มขึ้นถึง 9.2 พันล้านคนในปี 2050[169] จำนวนที่เพิ่มขึ้นส่วนใหญ่นั้นคาดอยู่ในประเทศกำลังพัฒนา ความหนาแน่นของประชากรมนุษย์ผันแปรมากทั่วโลก โดยส่วนใหญ่อยู่อาศัยในทวีปเอเชีย เมื่อถึงปี 2020 คาดว่าราวร้อยละ 60 ของประชากรโลกจะอยู่อาศัยในเมืองมากกว่าในพื้นที่แถบชนบท[170]
ประมาณกันว่าพื้นที่หนึ่งในแปดของผิวโลกเหมาะสมต่อการอยู่อาศัยของมนุษย์ โดยที่พื้นที่ราวสามในสี่ของผิวโลกถปกคลุมด้วยมหาสมุทร มีเพียงหนึ่งในสี่เท่านั้นที่เป็นแผ่นดินกว่าครึ่งของแผ่นดินเป็นพื้นที่แห้งแล้ง (ร้อยละ 14)[171] ภูเขาสูง (ร้อยละ 27)[172] หรือพื้นที่ที่ไม่เหมาะสมอื่น ๆ นิคมถาวรเหนือสุดของโลก คือ เมืองอเลิร์ท บนเกาะเอลสเมียร์ ในนูนาวุต ประเทศแคนาดา[173] (82°28′เหนือ) ส่วนตำแหน่งใต้สุดคือ สถานีขั้วโลกใต้อมุนด์เซน–สก็อตในทวีปแอนตาร์กติกา โดยมีที่ตั้งเกือบตำแหน่งเดียวกันกับขั้วโลกใต้ (90°ใต้)
รัฐเอกราชอ้างสิทธิ์เหนือพื้นผิวดินทั้งหมดของโลกยกเว้นเพียงบางส่วนของทวีปแอนตาร์กติกา แปลงที่ดินเล็ก ๆ ตามฝั่งตะวันตกของแม่น้ำดานูบ และพื้นที่ไม่มีการอ้างสิทธิ์บริเวณบีทาวิลซึ่งอยู่ระหว่างประเทศอียิปต์และซูดาน ในปี 2015 โลกมีรัฐสมาชิกสหประชาชาติ 193 รัฐ บวกรัฐผู้สังเกตการณ์ 2 รัฐ และดินแดนในภาวะพึ่งพิงและรัฐที่ได้รับการรับรองจำกัด 72 ดินแดนและรัฐ[164] ในประวัติศาสตร์โลกยังไม่เคยมีรัฐบาลเอกราชใดมีอำนาจเหนือโลกทั้งใบ บางรัฐชาติจำนวนหนึ่งที่เคยพยายามครองโลกแต่ล้มเหลว[174]
สหประชาชาติเป็นองค์การระหว่างรัฐบาลทั่วโลก ก่อตั้งขึ้นโดยมีเป้าหมายเพื่อเข้าแทรกแซงกรณีพิพาทระหว่างชาติรัฐต่าง ๆ จึงหลีกเลี่ยงการขัดกันด้วยอาวุธ[175] สหประชาชาติใช้เป็นที่สำหรับการทูตระหว่างประเทศตลอดจนกฎหมายระหว่างประเทศเป็นหลัก ต่อเมื่อมีฉันทามติจากชาติสมาชิกอนุญาตแล้วจึงมีกลไกเข้าแทรกแซงด้วยกำลังได้[176]
มนุษย์คนแรกที่ได้โคจรรอบโลกคือ ยูริ กาการิน เมื่อวันที่ 12 เมษายน 1961[177] หากนับรวมทั้งหมดจนถึง 30 กรกฎาคม 2010 มีมนุษย์ทั้งสิ้นราว 487 คนเคยเยือนอวกาศและในจำนวนนี้ สิบสองคนเคยเดินบนดวงจันทร์[178][179][180] ปกติมนุษย์ในอวกาศมีเฉพาะที่อยู่บนสถานีอวกาศนานาชาติเท่านั้น ลูกเรือของสถานีมีจำนวนทั้งสิ้นหกคนซึ่งจะมีการผลัดเปลี่ยนการปฏิบัติภารกิจทุกหกเดือน[181] ระยะทางที่ไกลที่สุดที่มนุษย์เคยเดินทางออกไปจากโลกคือ แม่แบบ:Val โดยเกิดขึ้นในระหว่างภารกิจ อะพอลโล 13 ในปี 1970[182]
ดวงจันทร์
| เส้นผ่านศูนย์กลาง | แม่แบบ:Val |
| มวล | 7.349แม่แบบ:E กก. |
| กึ่งแกนเอก | 384,400 กม. |
| คาบการโคจร | แม่แบบ:Nowrap |
แม่แบบ:Main ดวงจันทร์เป็นดาวบริวารขนาดค่อนข้างใหญ่ มีพื้นผิวแข็ง คล้ายดาวเคราะห์โดยมีเส้นผ่านศูนย์กลางประมาณหนึ่งในสี่ของโลก เป็นดาวบริวารขนาดใหญ่สุดในระบบสุริยะเมื่อเทียบสัดส่วนกับดาวเคราะห์ แม้ว่าแครอนมีขนาดใหญ่กว่าเมื่อเทียบสัดส่วนกับดาวเคราะห์แคระพลูโต ดาวบริวารที่โคจรรอบดาวเคราะห์อื่น ๆ ก็เรียก "ดวงจันทร์" ตามดวงจันทร์ของโลก
การดึงเชิงโน้มถ่วงระหว่างโลกและดวงจันทร์ก่อให้เกิดปรากฏการณ์น้ำขึ้นน้ำลงบนโลก ผลเช่นเดียวกันที่เกิดกับดวงจันทร์นำไปสู่ภาวะการตรึงด้วยแรงไทด์ (tidal locking) ทำให้ระยะเวลาในการหมุนรอบตัวเองของดวงจันทร์เท่ากันกับเวลาที่ใช้โคจรรอบโลก ผลคือดวงจันทร์จะหันด้านเดียวเข้าหาโลกเสมอ ในขณะที่ดวงจันทร์โคจรรอบโลกแต่ละรอบ พื้นผิวส่วนต่าง ๆ ของหน้าที่หันสู่โลกจะได้รับแสงจากดวงอาทิตย์ นำไปสู่ปรากฏการณ์ข้างขึ้นข้างแรม ส่วนหน้ามืดแยกออกจากส่วนสว่างโดยเขตสนธยาสุริยะ (solar terminator)

จากอันตรกิริยาน้ำขึ้นน้ำลง ดวงจันทร์จึงถอยห่างออกไปจากโลกในอัตราประมาณ 38 มิลลิเมตรต่อปี อีกหลายล้านปีข้างหน้าการเคลื่อนเล็ก ๆ น้อย ๆ นี้ รวมถึงวันของโลกที่ยาวขึ้นประมาณ 23 ไมโครวินาทีทุกปี จะทวีขึ้นจนกลายเป็นการเปลี่ยนแปลงที่มีนัยสำคัญ[183] ตัวอย่างเช่น ในระหว่างยุคดีโวเนียนเมื่อประมาณ แม่แบบ:Val หนึ่งปีโลกมี 400 วัน โดยวันหนึ่งมีเวลา 21.8 ชั่วโมง[184]
ดวงจันทร์อาจมีผลกระทบอย่างใหญ่หลวงต่อพัฒนาการของสิ่งมีชีวิตโดยการช่วยบรรเทาภูมิอากาศของโลกไม่ให้รุนแรงเกินไป หลักฐานบรรพชีวินวิทยาและแบบจำลองคอมพิวเตอร์แสดงให้เห็นว่าความเอียงของแกนโลกมีเสถียรภาพอยู่ได้โดยอันตรกิริยาขึ้นลงกับดวงจันทร์[5] นักทฤษฎีบางส่วนเชื่อว่าหากปราศจากเสถียรภาพนี้เมื่อต้องเผชิญกับแรงบิดที่ส่งมาจากจากดวงอาทิตย์และดาวเคราะห์อื่น ๆ ที่กระทำต่อส่วนโป่งบริเวณศูนย์สูตรของโลกแล้ว แกนหมุนของโลกอาจไร้เสถียรภาพถึงขั้นโกลาหล โดยจะแสดงการเปลี่ยนแปลงอย่างสับสนอลหม่านในทุก ๆ หลายล้านปีดังในกรณีของดาวอังคาร[185]
เมื่อมองจากโลก ดวงจันทร์อยู่ห่างออกไปพอให้ขนาดปรากฏของดวงจันทร์เกือบเท่ากับขนาดปรากฏของดวงอาทิตย์ ขนาดเชิงมุม (หรือมุมตัน) ของวัตถุทั้งสองเสมอกันเพราะเส้นผ่านศูนย์กลางของดวงอาทิตย์แม้จะมากกว่าของดวงจันทร์ร่วม 400 เท่า แต่ระยะทางมาถึงโลกก็ไกลกว่า 400 เท่าด้วยเช่นกัน[149] สภาพดังกล่าวเป็นสาเหตุให้สุริยุปราคาทั้งแบบเต็มดวงและแบบวงแหวนปรากฏบนโลกได้
ทฤษฎีการกำเนิดดวงจันทร์ที่ได้รับการยอมรับมากที่สุดคือสมมติฐานการชนใหญ่ โดยกล่าวว่าดวงจันทร์เกิดขึ้นจากที่ดาวเคราะห์ยุคแรกขนาดเท่าดาวอังคารชื่อ เธีย พุ่งชนโลกระยะแรก สมมติฐานนี้อธิบายเกี่ยวกับปริมาณเหล็กและธาตุระเหยง่ายที่ไม่ค่อยพบบนดวงจันทร์ ตลอดจนข้อเท็จจริงที่องค์ประกอบของดวงจันทร์แทบเหมือนกับองค์ประกอบของเปลือกโลก[186]
ดาวเคราะห์น้อยและดาวเทียม

โลกมีดาวเคราะห์น้อยร่วมวงโคจรอย่างน้อยห้าดวงด้วยกัน อาทิเช่น 3753 ครูอิทเนและ แม่แบบ:Mpl[187][188] ดาวเคราะห์น้อยโทรจันร่วมทางได้แก่ แม่แบบ:Mpl ซึ่งเคลื่อนไปตามเส้นทางล้ำหน้าโลก ณ ตำแหน่งจุดสามเหลี่ยมลากร็องจ์ (Lagrange triangular point) หรือแอล4 ในวงโคจรของโลกรอบดวงอาทิตย์[189][190]
ดาวเคราะห์น้อยใกล้โลกขนาดเล็ก แม่แบบ:Mpl เข้าเฉียดระบบโลก–ดวงจันทร์ประมาณทุก 20 ปี ระหว่างการเฉียดแต่ละครั้ง สามารถโคจรรอบโลกได้ช่วงสั้น ๆ[191] จนถึงเดือนมิถุนายน 2016 มีดาวเทียมในระหว่างปฏิบัติการ 1,419 ดวงโคจรรอบโลก[192] ยังมีดาวเทียมที่ยุติการใช้งานแล้วและขยะอวกาศที่มีการติดตามอีก 17,729 ชิ้น[193] ดาวเทียมใหญ่สุดของโลกคือสถานีอวกาศนานาชาติ
มุมมองด้านประวัติศาสตร์และวัฒนธรรม


สัญลักษณ์ทางดาราศาสตร์มาตรฐานของโลกประกอบด้วยกากบาทที่มีวงกลมล้อมรอบอยู่
[194] เป็นตัวแทนของสี่มุมโลก
วัฒนธรรมมนุษย์พัฒนามุมมองต่าง ๆ ของโลก บางทีโลกก็มีบุคลาธิษฐานเป็นเทพเจ้า ในหลายวัฒนธรรม เทพมารดา (mother goddess) เป็นเทพเจ้าความอุดมสมบูรณ์หลักด้วย[195] และเมื่อกลางคริสต์ศตวรรษที่ 20 หลักไกอาเปรียบเทียบสิ่งแวดล้อมของโลกกับสิ่งมีชีวิตเป็นสิ่งมีชีวิตกำกับตัวเองเดี่ยว ๆ ที่นำไปสู่การสร้างเสถียรภาพอย่างกว้างขวางซึ่งภาวะการอยู่อาศัยได้[196][197][198] ปรัมปราการสรรค์สร้างในหลายศาสนามีว่า เทพเจ้าเหนือธรรมชาติพระองค์เดียวหรือหลายพระองค์ทรงสร้างโลก[195]
การสอบสวนทางวิทยาศาสตร์ส่งผลให้เกิดการเปลี่ยนแปลงทางวัฒนธรรมในมุมมองของมนุษย์ต่อโลก ในโลกตะวันตก ความเชื่อเรื่องโลกแบน[199] ถูกแทนด้วยโลกทรงกลมอันเนื่องจากพีทาโกรัสในศตวรรษที่ 6 ก่อนคริสตกาล[200] ต่อมาเชื่อว่าโลกเป็นศูนย์กลางของเอกภพจนคริสต์ศตวรรษที่ 16 เมื่อนักวิทยาศาสตร์ตั้งทฤษฎีว่าโลกเป็นวัตถุเคลื่อที่โดยเทียบกับดาวเคราะห์อื่นในระบบสุริยะครั้งแรก เนื่องจากความพยายามของนักวิชาการคริสต์ศาสนิกชนผู้ทรงอิทธิพลและนักบวชอย่างเจมส์ อัชเชอร์ ผู้มุ่งหาอายุของโลกผ่านการวิเคราะห์พงศาวลีวิทยาในคัมภีร์ไบเบิล ชาวตะวันตกก่อนคริสต์ศตวรรษที่ 19 โดยทั่วไปจึงเชื่อว่าโลกมีอายุเก่าสุดไม่กี่พันปี[201] จนระหว่างคริสต์ศตวรรษที่ 19 ที่นักธรณีวิทยาทราบว่าโลกมีอายุหลายล้านปีแล้ว[202]
ลอร์ดเคลวินใช้อุณหพลศาสตร์คาดคะเนอายุของโลกไว้ระหว่าง 20 ถึง 400 ล้านปีในปี 1864 ทำให้เกิดการอภิปรายอย่างเข้มข้นในเรื่องนี้ จนเมื่อมีการค้นพบกัมมันตภาพรังสีและการวัดอายุจากกัมมันตรังสีในปลายคริสต์ศตวรรษที่ 19 และต้นคริสต์ศตวรรษที่ 20 ที่มีกลไกน่าเชื่อถือสำหรับการหาอายุของโลก พิสูจน์ว่าโลกมีอายุในหลักพันล้านปี[203][204] มโนทัศน์ของโลกเปลี่ยนอีกครั้งในคริสต์ศตวรรษที่ 20 เมื่อมนุษย์มองโลกครั้งแรกจากวงโคจร และโดยเฉพาะอย่างยิ่งโดยภาพถ่ายของโลกที่โครงการอะพอลโลส่งกลับมา[205]
เชิงอรรถ
ดูเพิ่ม
อ้างอิง
แหล่งข้อมูลอื่น
- Earth – Profile – Solar System Exploration – NASA
- Earth Observatory – NASA
- Earth – Videos – International Space Station:
- Video (01:02) – Earth (time-lapse)
- Video (00:27) – Earth and auroras (time-lapse)
- Google Earth 3D, interactive map
- Interactive 3D visualization of the Sun, Earth and Moon system
- GPlates Portal (University of Sydney)
แม่แบบ:ระบบสุริยะ แม่แบบ:Navboxes แม่แบบ:Authority control
- ↑ แม่แบบ:Cite web
- ↑ แม่แบบ:Cite journal
- ↑ แม่แบบ:Cite journal
- ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อyoder1995 - ↑ 5.0 5.1 อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อaaa428_261 - ↑ แม่แบบ:Cite web
- ↑ 7.0 7.1 อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อage_earth1 - ↑ แม่แบบ:Cite news
- ↑ แม่แบบ:Cite journal Early edition, published online before print.
- ↑ แม่แบบ:Cite journal
- ↑ แม่แบบ:Cite book
- ↑ แม่แบบ:Cite news
- ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อscience_241_4872_1441 - ↑ แม่แบบ:Cite book
- ↑ แม่แบบ:Cite news
- ↑ แม่แบบ:Cite journal
- ↑ มหาวรรค ญาณกถา ข้อ ๒๗๕, พระไตรปิฎก เล่มที่ 31 พระสุตตันตปิฎก ขุททกนิกาย ปฏิสัมภิทามรรค
- ↑ อรรถาธิบาย โลกวิทู, พระไตรปิฎกอรรถกถา เล่มที่ 1 อรรถกถาพระวินัย สมันตปาสาทิกา มหาวิภังควรรณนา
- ↑ แม่แบบ:Cite web
- ↑ The New Oxford Dictionary of English, แม่แบบ:Nowrap "earth". Oxford University Press (Oxford), 1998. ISBN 0-19-861263-X.
- ↑ Oxford English Dictionary, แม่แบบ:Nowrap "earth, n.¹" Oxford University Press (Oxford), 2010.
- ↑ Tacitus. Germania, แม่แบบ:Nowrap.
- ↑ Simek, Rudolf. Trans. Angela Hall as Dictionary of Northern Mythology, แม่แบบ:Nowrap D.S. Brewer, 2007. ISBN 0-85991-513-1.
- ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อbowring_housch1995 - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อnature418_6901_949 - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อscience310_5754_1671 - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อreilly20091022 - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อcanup_asphaug2001a - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อcanup_asphaug2001b - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อwatersource - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อasp2002 - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อphysorg20100304 - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อwilliams_santosh2004 - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อscience164_1229 - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อtp322_19 - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อrg6_175 - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อscience310_5756_1947 - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อjaes23_799 - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อajes38_613 - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อas92_324 - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อpsc - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อsa282_6_90 - ↑ 43.0 43.1 43.2 แม่แบบ:Cite news
- ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อjas22_3_225 - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อburton20021129 - ↑ แม่แบบ:Cite news
- ↑ แม่แบบ:Cite journal
- ↑ แม่แบบ:Cite web
- ↑ แม่แบบ:Cite web
- ↑ แม่แบบ:Cite journal
- ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อkirschvink1992 - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อsci215_4539_1501 - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อgould1994 - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อbgsa119_1_140 - ↑ 55.0 55.1 55.2 อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อsun_future - ↑ 56.0 56.1 อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อbritt2000 - ↑ 57.0 57.1 อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อward_brownlee2002 - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อcarrington - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อpnas1_24_9576 - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อhess5_4_569 - ↑ 61.0 61.1 อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อsun_future_schroder - ↑ แม่แบบ:Cite web
- ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อmilbert_smith96 - ↑ 64.0 64.1 อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อngdc2006 - ↑ The 'Highest' Spot on Earth? NPR.org Consultado el 25-07-2010
- ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อbrown_mussett1981 - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อpnas71_12_6973 - ↑
One or more of the preceding sentences incorporates text from a publication now in the public domain Chisholm, Hugh, ed. (1911). "Petrology". Encyclopædia Britannica (11th ed.). Cambridge University Press.
- ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อtanimoto_ahrens1995 - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อscience309_5739_1313 - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อpnas76_9_4192 - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อrobertson2001 - ↑ 73.0 73.1 อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อturcotte - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อsanders20031210 - ↑ http://www.esrf.eu/news/general/Earth-Center-Hotter/Earth-Centre-Hotter
- ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อptrsl360_1795_1227 - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อepsl121_1 - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อT&S 137 - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อjg31_3_267 - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อscience246_4926_103 - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อheat loss - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อbrown_wohletz2005 - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อkious_tilling1999 - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อseligman2008 - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อduennebier1999 - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อnoaa20070307 - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อcmp134_3 - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อpodp2000 - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อgps_time_series - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อPidwirny 2006_8 - ↑ แม่แบบ:Cite web
- ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อkring - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อlayers_earth - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อjessey - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อde_pater_lissauer2010 - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อwekn_bulakh2004 - ↑ แม่แบบ:Cite web
- ↑ แม่แบบ:Cite web
- ↑ แม่แบบ:Cite web
- ↑ แม่แบบ:Cite journal
- ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อkaiko7000 - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อocean23_2_112 - ↑ Sphere depth of the ocean, Encyclopædia Britannica
- ↑ แม่แบบ:Cite web
- ↑ "The World of Water", USGS
- ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อkennish2001 - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อmullen2002 - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อnatsci_oxy4 - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อmichon2006 - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อsample2005 - ↑ 111.0 111.1 111.2 อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อearth_fact_sheet - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อgeerts_linacre97 - ↑ 113.0 113.1 อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อatmosphere - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อPidwirny2006_7 - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อNarottam2008 - ↑ 116.0 116.1 อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อmoran2005 - ↑ 117.0 117.1 อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อberger2002 - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อrahmstorf2003 - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อhydrologic_cycle - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อsadava_heller2006 - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อclimate_zones - ↑ แม่แบบ:Cite web
- ↑ แม่แบบ:Cite web
- ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อsciweek2004 - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อcordoba2004 - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อjas31_4_1118 - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อsci293_5531_839 - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อabedon1997 - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อarwps4_265 - ↑ แม่แบบ:Cite journal
- ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อlang2003 - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อfitzpatrick2006 - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อcampbelwh - ↑ 134.0 134.1 แม่แบบ:Cite encyclopedia
- ↑ แม่แบบ:Cite web
- ↑ แม่แบบ:Cite web
- ↑ แม่แบบ:Cite web
- ↑ แม่แบบ:Cite book
- ↑ แม่แบบ:Cite book
- ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อstern2005 - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อaj136_5_1906 - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อUSNO_TSD - ↑ แม่แบบ:Cite web
- ↑ 144.0 144.1 144.2 อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อIERS - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อseidelmann1992 - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อiers1623 - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อiers1962 - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อzeilik1998 - ↑ 149.0 149.1 อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อangular - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อmoon_fact_sheet - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อvazquez_etal2006 - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อnasa20051201 - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อbromberg2008 - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อlin2006 - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อfisher19960205 - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อwilliams20051230 - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อab2003 - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อdole1970 - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อamnat163_2_192 - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อLambin2011 - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อmnpl_utx2006 - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อscience299_5607_673 - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อTurner1990 - ↑ 164.0 164.1 อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อcia - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อwalsh2008 - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อun20070202 - ↑ World at the Xpeditions Atlas, National Geographic Society, Washington D.C., 2006.
- ↑ แม่แบบ:Cite web
- ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อun2006 - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อprb2007 - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อhessd4_439 - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อbiodiv - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อcfsa2006 - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อkennedy1989 - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อuncharter - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อun_int_law - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อkuhn2006 - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อellis2004 - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อshayler_vis2005 - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อwade2008 - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อnasa_rg_iss2007 - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อcramb2007 - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อespenak_meeus20070207 - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อhannu_poropudas19911216 - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อnature410_6830_773 - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อnature412_708 - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อwhitehouse20021021 - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อchristou_asher2011 - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อConnors - ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อChoi - ↑ แม่แบบ:Cite web
- ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อucs - ↑ As of 4 January 2018, the United States Strategic Command tracked a total of 18,835 artificial objects, mostly debris. See: แม่แบบ:Cite journal
- ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อliungman2004 - ↑ 195.0 195.1 แม่แบบ:Cite book
- ↑ แม่แบบ:Cite book
- ↑ แม่แบบ:Cite journal
- ↑ แม่แบบ:Cite journal
- ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อrussell1997 - ↑ แม่แบบ:Cite web
- ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อarnett20060716 - ↑ แม่แบบ:Cite book
- ↑ แม่แบบ:Cite book
- ↑ แม่แบบ:Cite book
- ↑ แม่แบบ:Cite news
อ้างอิงผิดพลาด: มีป้ายระบุ <ref> สำหรับกลุ่มชื่อ "n" แต่ไม่พบป้ายระบุ <references group="n"/> ที่สอดคล้องกัน

