สภาพให้ซึมผ่านได้ทางแม่เหล็ก

จาก testwiki
รุ่นแก้ไขเมื่อ 12:50, 7 มกราคม 2568 โดย imported>อมฤตาลัย (สภาพให้ซึมผ่านได้สัมพัทธ์)
(ต่าง) ←รุ่นแก้ไขก่อนหน้า | รุ่นแก้ไขล่าสุด (ต่าง) | รุ่นแก้ไขถัดไป→ (ต่าง)
ไปยังการนำทาง ไปยังการค้นหา

สภาพให้ซึมผ่านได้ (permeability) ในทางทฤษฎีแม่เหล็กไฟฟ้า เป็นค่าที่บอกถึงระดับของความเหนี่ยวนำแม่เหล็กของวัสดุจากการตอบสนองเชิงเส้นกับสนามแม่เหล็ก มักจะแสดงด้วยตัวอักษรกรีก μ สูตรการแสดงสนามแม่เหล็กโดยใช้ค่านี้ถูกสร้างขึ้นในเดือนกันยายน 1885 โดยโอลิเวอร์ เฮวิไซด์

หน่วยเอสไอของสภาพให้ซึมผ่านได้คือ เฮนรีต่อเมตร (H·m-1) หรือนิวตันต่อแอมแปร์กำลังสอง (N·A-2)

ค่าคงที่ μ0 คือค่าสภาพให้ซึมผ่านได้ของสุญญากาศ ซึ่งยังถูกเรียกว่า ค่าคงตัวแม่เหล็ก[1] ซึ่งถูกนิยามไว้อย่างแน่ชัดมีค่าเป็น μ0 = 4π×10−7 N·A−2

คำอธิบาย

ในทางทฤษฎีแม่เหล็กไฟฟ้า ค่าความแรงสนามแม่เหล็ก H อธิบายว่าการเหนี่ยวนำที่ความหนาแน่นฟลักซ์แม่เหล็ก B ส่งผลต่อกระจุกของไดโพลแม่เหล็กในตัวกลางเฉพาะอย่างไร รวมถึงการเคลื่อนตัวของไดโพลและการปรับทิศทางของไดโพลแม่เหล็ก ความสัมพันธ์กับค่าสภาพให้ซึมผ่านได้ของแม่เหล็ก μ คือ:

𝐁=μ𝐇

สภาพให้ซึมผ่านได้ μ จะเป็นปริมาณสเกลาร์ในตัวกลางไอโซทรอปิก และเป็นเทนเซอร์ในตัวกลางแอนไอโซทรอปิก

โดยทั่วไป ค่าสภาพให้ซึมผ่านได้จะไม่คงที่ โดยอาจแปรผันตามตำแหน่งภายในตัวกลาง ความถี่ของสนาม รวมถึง ความชื้น อุณหภูมิ และพารามิเตอร์อื่น ๆ ในตัวกลางแบบไม่เชิงเส้น สภาพให้ซึมผ่านได้จะขึ้นอยู่กับความแรงสนามแม่เหล็ก สภาพให้ซึมผ่านได้เป็นฟังก์ชันของความถี่ อาจเป็นค่าจำนวนจริงหรือจำนวนเชิงซ้อนได้ สำหรับในวัสดุเฟอโรแมกเนติก ความสัมพันธ์ระหว่าง B และ H นั้นจะไม่เป็นเชิงเส้น นั่นคือ B ไม่ใช่ฟังก์ชันที่เป็นแค่ค่าคงตัวคูณกับ H[2] แต่ยังขึ้นอยู่กับประวัติความเปลี่ยนแปลงภายในตัววัสดุด้วย สำหรับวัสดุเหล่านี้ บางครั้งพิจารณาถึงสภาพให้ซึมผ่านได้ของแม่เหล็กที่เพิ่มขึ้น

Δ𝐁=μΔΔ𝐇

สภาพให้ซึมผ่านได้คือความเหนี่ยวนำไฟฟ้าต่อหน่วยความยาว ในระบบหน่วยสากล หน่วยของสภาพให้ซึมผ่านได้คือ เฮนรีต่อเมตร (H·m -1 = J/(A2·m) = N·A-2) ความแรงสนามแม่เหล็ก H คือ กระแสไฟฟ้าต่อหน่วยความยาว มีหน่วยเป็น แอมแปร์ต่อเมตร (A·m−1) ดังนั้น μH จึงเป็นค่าเป็นความเหนี่ยวนำคูณด้วยกระแสไฟฟ้าต่อหน่วยพื้นที่ (H·A/m2) แต่ความเหนี่ยวนำคือ ฟลักซ์แม่เหล็กต่อหน่วยกระแสไฟฟ้า ดังนั้นผลคูณจึงเป็นฟลักซ์แม่เหล็กต่อหน่วยพื้นที่ด้วย ในขณะที่ความหนาแน่นฟลักซ์แม่เหล็ก B มีหน่วยเป็นเวเบอร์ (โวลต์ วินาที) ต่อตารางเมตร (V·s/m2) หรือ เทสลา (T)

ความหนาแน่นฟลักซ์แม่เหล็ก B เกี่ยวพันกับแรงโลเรินตส์ของประจุเคลื่อนที่ q

𝐅=q(𝐄+𝐯×𝐁)

หน่วยของประจุ q คือ คูลอมบ์ (C) และความเร็ว v คือ m/s ดังนั้นแรง F จึงคำนวณเป็นนิวตัน (N):

q𝐯×𝐁=CmsVsm2=C(J / C)m=Jm=N

ส่วนความแรงสนามแม่เหล็ก H เกี่ยวข้องกับความหนาแน่นของไดโพลแม่เหล็ก ไดโพลแม่เหล็กเป็นวงจรกระแสปิด โมเมนต์แม่เหล็ก ของมันคือกระแสคูณด้วยพื้นที่ หน่วยคือแอมแปร์ เมตรกำลังสอง (A·m2) และมีค่าเท่ากับกระแสบนขดลวดคูณจำนวนรอบ[3] H เป็นสัดส่วนกับไดโพลที่ระยะห่างจากมัน และขนาดของ H เป็นสัดส่วนกับโมเมนต์ไดโพลหารด้วยกำลังสามของระยะทาง[4] และมีความหมายในทางฟิสิกส์คือกระแสต่อหน่วยความยาว

สภาพให้ซึมผ่านได้สัมพัทธ์

สภาพให้ซึมผ่านได้ผ่านสัมพัทธ์ บางครั้งถูกเขียนในรูป μr คือ อัตราส่วนของสภาพให้ซึมผ่านได้ μ ของตัวกลางหนึ่ง ๆ ต่อ สภาพให้ซึมผ่านได้ของสุญญากาศ μ0

μr=μμ0

และยังอาจเขียนในรูปของค่าสภาพรับแม่เหล็กได้ χm เป็น

χm=μr1

อ้างอิง

แม่แบบ:รายการอ้างอิง

อ่านเพิ่มเติม

  1. แม่แบบ:Cite web
  2. Jackson (1975), p. 190
  3. แม่แบบ:Cite book p. 182 eqn. (5.57)
  4. Jackson (1975) p. 182 eqn. (5.56)