ผลคูณไขว้

จาก testwiki
ไปยังการนำทาง ไปยังการค้นหา

แม่แบบ:ต้องการอ้างอิง

ผลคูณไขว้ a × b มีทิศตรงข้ามกับ b × a

ผลคูณไขว้ หรือ ผลคูณเชิงเวกเตอร์ ในทางคณิตศาสตร์ คือ การดำเนินการทวิภาคบนเวกเตอร์สองอันในปริภูมิแบบยุคลิดสามมิติ ซึ่งให้ผลลัพธ์เป็นเวกเตอร์อีกอันหนึ่งที่ตั้งฉากกับสองเวกเตอร์แรก ในขณะที่ผลคูณจุดของสองเวกเตอร์จะให้ผลลัพธ์เป็นปริมาณสเกลาร์ ผลคูณไขว้ไม่มีการนิยามบนมิติอื่นนอกจากสามมิติ และไม่มีคุณสมบัติการเปลี่ยนกลุ่ม เมื่อเทียบกับผลคูณจุด สิ่งที่เหมือนกันคือผลลัพธ์จะขึ้นอยู่กับปริภูมิอิงระยะทาง (metric space) ของปริภูมิแบบยุคลิด แต่สิ่งที่ต่างกันคือผลลัพธ์จะขึ้นอยู่กับการกำหนดทิศทาง (orientation)

นิยาม

การหาทิศทางของเวกเตอร์ลัพธ์ด้วยกฎมือขวา

ผลคูณไขว้ของเวกเตอร์สองอัน a และ b ในปริภูมิสามมิติ เขียนแทนด้วย a × b (อ่านว่า เอ ครอสส์ บี) คือเวกเตอร์ c ที่ตั้งฉากกับทั้ง a และ b โดยมีทิศทางตามกฎมือขวาและมีขนาดเท่ากับพื้นที่ของรูปสี่เหลี่ยมด้านขนานที่เวกเตอร์สองอันนั้นครอบคลุม

ผลคูณไขว้สามารถคำนวณได้จากสูตร

𝐚×𝐛=absinθ 𝐧^

เมื่อ θ คือขนาดของมุม (ที่ไม่ใช่มุมป้าน) ระหว่าง a กับ b (0° ≤ θ ≤ 180°) a กับ b ในสูตรคือขนาดของเวกเตอร์ a และ b ตามลำดับ และ 𝐧^ คือเวกเตอร์หน่วยที่ตั้งฉากกับเวกเตอร์ a และ b ถ้าหากทั้งสองเวกเตอร์นั้นร่วมเส้นตรงกัน (คือมีมุมระหว่างเวกเตอร์เป็น 0° หรือ 180°) ผลคูณไขว้จะได้ผลลัพธ์เป็นเวกเตอร์ศูนย์ 0

ทิศทางของเวกเตอร์ 𝐧^ ถูกกำหนดโดยกฎมือขวา ซึ่งให้นิ้วชี้แทนทิศทางของเวกเตอร์ a และนิ้วกลางแทนทิศทางของเวกเตอร์ b ทิศทางของเวกเตอร์ 𝐧^ จะอยู่ที่นิ้วโป้ง (ดูรูปทางขวาประกอบ)

วิธีคำนวณผลคูณไขว้

สัญกรณ์พิกัด

กำหนดให้ i, j, k เป็นเวกเตอร์หน่วยในระบบพิกัดมุมฉาก ที่ตั้งฉากซึ่งกันและกันตามคุณสมบัติต่อไปนี้

𝐢×𝐣=𝐤𝐣×𝐤=𝐢𝐤×𝐢=𝐣

โดยเวกเตอร์ a และ b สามารถเขียนให้อยู่ในรูปแบบของ i, j, k ได้ดังนี้

𝐚=a1𝐢+a2𝐣+a3𝐤=(a1,a2,a3)𝐛=b1𝐢+b2𝐣+b3𝐤=(b1,b2,b3)

ผลคูณไขว้ a × b สามารถคำนวณได้จากสูตรนี้ โดยไม่ต้องพิจารณาขนาดของมุม

𝐚×𝐛=(a2b3a3b2)𝐢+(a3b1a1b3)𝐣+(a1b2a2b1)𝐤=(a2b3a3b2, a3b1a1b3, a1b2a2b1)

สัญกรณ์เมทริกซ์

สัญกรณ์พิกัดข้างต้นสามารถเขียนได้อีกอย่างหนึ่งเป็นดีเทอร์มิแนนต์ของเมทริกซ์ดังนี้

𝐚×𝐛=|𝐢𝐣𝐤a1a2a3b1b2b3|=𝐢(a2b3)+𝐣(a3b1)+𝐤(a1b2)𝐢(a3b2)𝐣(a1b3)𝐤(a2b1)

ดูเพิ่ม

แหล่งข้อมูลอื่น

แม่แบบ:โครงคณิตศาสตร์