ทรงหลายหน้า
แม่แบบ:ต้องการอ้างอิง ทรงหลายหน้า (แม่แบบ:Langx, พหูพจน์: polyhedra) หมายถึง วัตถุทางเรขาคณิตที่ประกอบด้วยหน้าเรียบและขอบตรง
ทรงหลายหน้าเป็นที่น่าหลงใหลของมนุษยชาติมาตั้งแต่ยุคก่อนประวัติศาสตร์ ซึ่งได้ศึกษาอย่างเป็นกิจลักษณะโดยชาวกรีกโบราณ ต่อเนื่องมาจนถึงนักเรียน นักคณิตศาสตร์ และศิลปินทุกวันนี้ คำว่า polyhedron มาจากภาษากรีก πολυεδρον โดยที่ poly- มาจาก πολυς แปลว่า "มากมาย" และ -edron มาจาก εδρον แปลว่า "ฐาน, ที่นั่ง, หน้า"
อะไรคือทรงหลายหน้า
ทรงหลายหน้าถูกสร้างขึ้นมาจากความแตกต่างในองค์ประกอบหรือเอกลักษณ์ ซึ่งมีความเกี่ยวเนื่องกับจำนวนที่แตกต่างบนมิติ (dimension) ดังเช่น
- 3 มิติ: วัตถุ (body) ที่ถูกปิดล้อมด้วยหน้าหลายหน้า และมักจะมีปริมาตร (volume) อยู่ข้างใน
- 2 มิติ: หน้า (face) ที่ถูกปิดล้อมด้วยขอบเขตเส้นตรง และมักจะเป็นพื้นราบที่เรียกว่ารูปหลายเหลี่ยม (polygon) เมื่อหลาย ๆ หน้ารวมกันทำให้เกิดผิวหน้า (surface) ของทรงหลายหน้า
- 1 มิติ: ขอบ (edge) ที่เชื่อมระหว่างจุดยอดหนึ่งกับจุดยอดอื่น และมักจะเป็นเส้นตรง เมื่อหลาย ๆ ขอบรวมกันทำให้เกิดโครงสร้าง (skeleton) ของทรงหลายหน้า
- 0 มิติ: จุดยอด (vertex, พหูพจน์: vertices) คือจุดปลายของทรงหลายหน้า
- -1 มิติ: ความว่างเปล่า (nullity) องค์ประกอบชนิดหนึ่งที่ใช้อธิบายทฤษฎีเชิงนามธรรม
ทรงหลายหน้าเป็นตัวอย่างที่เป็นสามมิติของพอลิโทป (polytope) ที่มีจำนวนมิติใด ๆ
ลักษณะเฉพาะ
ชื่อของทรงหลายหน้า
ทรงหลายหน้ามักจะถูกตั้งชื่อตามจำนวนหน้า โดยใช้ระบบเลขในภาษากรีกเป็นพื้นฐาน ตัวอย่างเช่น ทรงสี่หน้า (tetrahedron), ทรงห้าหน้า (pentahedron), ทรงหกหน้า (hexahedron), ทรงเจ็ดหน้า (heptahedron), ทรงสามสิบหน้า (triacontahedron) เป็นต้น และมักจะมีการอธิบายชนิดของหน้าบนทรงหลายหน้านั้น เช่น ทรงสิบสองหน้าสี่เหลี่ยมขนมเปียกปูน (rhombic dodecahedron) กับ ทรงสิบสองหน้าห้าเหลี่ยม (pentagonal dodecahedron) เป็นต้น
แต่ก็มีทรงหลายหน้าพิเศษบางชนิดซึ่งมีชื่อเรียกมานานแล้ว เช่น สัตว์ประหลาดของมิลเลอร์ (Miller's monster) หรือ ทรงหลายหน้าซิแลสซี (Szilassi polyhedron) เป็นต้น
ขอบ
ขอบของทรงหลายหน้ามีลักษณะเฉพาะที่สำคัญสองอย่าง ได้แก่
- ขอบหนึ่งขอบจะเชื่อมต่อระหว่างจุดยอดสองจุดเท่านั้น
- ขอบหนึ่งขอบเป็นตัวเชื่อมระหว่างหน้าสองหน้าเท่านั้น
ลักษณะเฉพาะออยเลอร์
ลักษณะเฉพาะออยเลอร์ (Euler characteristic) แทนด้วยอักษรกรีก ไค ตัวเล็ก (χ) ซึ่งสัมพันธ์กับจำนวนจุดยอด V ขอบ E และหน้า F ของทรงหลายหน้า
ทรงหลายหน้าอย่างง่าย เช่น ทรงตันเพลโต (Platonic solid) จะมีลักษณะเฉพาะออยเลอร์เท่ากับ 2 เป็นต้น
ภาวะคู่กัน
ภาวะคู่กัน (duality) จะปรากฏในทรงหลายหน้าทุกรูปทรง และเรียกรูปทรงที่คู่กันว่า ทรงหลายหน้าคู่กัน (dual polyhedron) ซึ่งเป็นรูปทรงที่แทนจุดยอดด้วยหน้า และแทนหน้าด้วยจุดยอดไปเป็นอีกรูปทรงหนึ่ง ส่วนใหญ่ทรงหลายหน้าคู่กันสามารถสร้างได้จากกระบวนการการแลกเปลี่ยนเชิงทรงกลม หรือการตัดปลาย (truncation) ของทรงหลายหน้านั้น
ภาพจุดยอด
สำหรับทุกๆ จุดยอด เราสามารถสร้างภาพจุดยอด (vertex figure) โดยการลากเส้นที่จุดยอดอื่น ซึ่งเชื่อมต่อรอบจุดยอดที่เราพิจารณา ให้เป็นรูปร่างขึ้นมา
แหล่งข้อมูลอื่น
- แม่แบบ:Mathworld
- Making Polyhedra
- Polyhedra Pages
- Stella: Polyhedron Navigator - Software for exploring polyhedra and printing nets for their physical construction. Includes uniform polyhedra, stellations, compounds, Johnson solids, etc.
- The Uniform Polyhedra
- Virtual Reality Polyhedra - The Encyclopedia of Polyhedra
- Paper Models of Polyhedra แม่แบบ:Webarchive Many links
- Paper Models of Uniform (and other) Polyhedra
- Interactive 3D polyhedra in Java แม่แบบ:Webarchive
- World of Polyhedra แม่แบบ:Webarchive - Comprehensive polyhedra in flash applet, showing vertices and edges (but not shaded faces)
- Polyhedra software, die-cast models, & posters
- Electronic Geometry Models - Contains a peer reviewed selection of polyhedra with unusual properties
- Symmetry, Crystals and Polyhedra แม่แบบ:Webarchive
- uniform solution for uniform polyhedra by Dr. Zvi Har'El แม่แบบ:Webarchive
- Java applet with the use of kaleido แม่แบบ:Webarchive
- Origami Polyhedra - Models made with Modular Origami
- Polyhedra Collectionแม่แบบ:ลิงก์เสีย - Various virtual and physical polyhedra models