ระบบพิกัดทรงกระบอก

จาก testwiki
ไปยังการนำทาง ไปยังการค้นหา

แม่แบบ:ต้องการอ้างอิง

ระบบพิกัดทรงกระบอก มี O เป็นจุดกำเนิด A เป็นแกนเชิงขั้ว L เป็นแกนลองจิจูด

ระบบพิกัดทรงกระบอก (แม่แบบ:Langx) เป็นระบบพิกัดสามมิติที่กำหนดตำแหน่งของจุดโดยใช้ระยะทางจากแกนอ้างอิง มุมจากทิศอ้างอิง และระยะทางจากระนาบอ้างอิงที่ตั้งฉากกับแกนอ้างอิง โดยระยะทางจากระนาบมีเครื่องหมายเป็นบวกหรือลบได้ ขึ้นกับฝั่งของระนาบที่หันหาจุด

จุดที่พิกัดทั้งสามเป็นศูนย์ คือ จุดกำเนิด ซึ่งเป็นจุดที่แกนอ้างอิงตัดกับทิศอ้างอิง แกนอ้างอิงอาจเรียกว่า แกนทรงกระบอก หรือ แกนลองจิจูด ส่วนรังสีจากจุดกำเนิดไปทิศอ้างอิงอาจเรียกว่า แกนเชิงขั้ว

ระยะทางจากแกนลองจิจูด เรียกว่า รัศมี มุมจากแกนเชิงขั้ว เรียกว่า มุมทิศ พิกัดทั้งสองนี้รวมกันเป็นระบบพิกัดเชิงขั้ว ซึ่งเมื่อเพิ่มระยะทางจากระนาบ เรียกว่า ความสูง จะได้ระบบพิกัดทรงกระบอก

นิยาม

จุด P ใด ๆ ในระบบพิกัดทรงกระบอกแสดงโดยสามสิ่งอันดับ (ρ, φ, z) โดยที่

  • ρ แสดงรัศมี คือระยะห่างของ P จากแกนอ้างอิง นั่นคือ แกน z
  • φ แสดงมุมทิศ คือมุมระหว่างทิศอ้างอิงบนระนาบอ้างอิง กับเส้นตรงที่ลากจากจุดกำเนิดไปหาภาพฉายของจุด P บนระนาบอ้างอิง
  • z แสดง ความสูง คือระยะทางที่คิดเครื่องหมายจากจุด P ไประนาบอ้างอิง

จากนิยามเพียงเท่านี้ จุดหนึ่งจุดยังคงมีได้หลายพิกัด โดยพิกัด (ρ, φ, z) จะแสดงจุดเดียวกับ (ρ, φ + n×360°, z) และ (−ρ, φ + (2n + 1)×180°, z) เมื่อ n เป็นจำนวนเต็มใด ๆ เสมอ ดังนั้นเพื่อให้แต่ละจุดระบุพิกัดได้แบบเดียว ตามปกติจะจำกัดให้ ρ ≥ 0 และ φ อยู่ในช่วง [−180°,+180°] หรือ [0,360°]

สัญกรณ์อีกแบบที่ใช้บ่อย คือใช้ r แทนรัศมี ใช้ θ แทนมุมทิศ และ h แทนความสูง

การแปลงระหว่างระบบพิกัด

ระบบพิกัดคาร์ทีเซียน

โดยปกติถือว่า แกน z ของระบบพิกัดทรงกระบอกเป็นแกนเดียวกับแกน z ของระบบพิกัดคาร์ทีเซียน ดังนั้นพิกัด z ของทั้งสองระบบจึงมีค่าเท่ากัน ส่วนอีกสองพิกัดของระบบพิกัดทรงกระบอกเหมือนกับระบบพิกัดเชิงขั้ว ดังนั้นการแปลงพิกัดทรงกระบอกเป็นคาร์ทีเซียนมีสูตรว่า

x=ρcosϕy=ρsinϕz=z

และการแปลงพิกัดคาร์ทีเซียนเป็นทรงกระบอกมีสูตรว่า

ρ=x2+y2φ={0if x=0 and y=0arcsin(yρ)if x0arctan(yx)if x>0arcsin(yρ)+πif x<0

ระบบพิกัดทรงกลม

การแปลงระบบพิกัดทรงกระบอกเป็นระบบพิกัดทรงกลม เมื่อใช้ φ แทนมุมทิศและ θ แทนมุมเชิงขั้ว มีสูตรว่า

r=ρ2+z2φ=φθ=arctan(ρz)

และการแปลงกลับมีสูตรว่า

ρ=rsinθφ=φz=rcosθ