มีดโกนออกคัม

จาก testwiki
ไปยังการนำทาง ไปยังการค้นหา

มีดโกนออกคัม[1] (แม่แบบ:Langx) ถูกเสนอโดยวิลเลียมแห่งออกคัม เป็นมีดโกนหนึ่งในปรัชญาวิทยาศาสตร์ในการเลือกทฤษฎีที่เหมาะสมและตรงกับข้อมูลที่ได้จากการสังเกตหรือการทดลอง

มีดโกนของออกคัมนี้ถูกนำไปตีความในหลายรูปแบบ โดยนักปรัชญาและนักวิทยาศาสตร์หลายท่าน อย่างไรก็ตาม อาจกล่าวถึงมีดโกนของออกคัมในรูปแบบที่ง่ายที่สุดได้ว่า "เราไม่ควรสร้างข้อสมมุติฐานเพิ่มเติมโดยไม่จำเป็น" หรือ "ทฤษฎีไม่ควรซับซ้อนเกินความจำเป็น" นั่นคือในกรณีที่ทฤษฎี หรือคำอธิบายปรากฏการณ์ต่าง ๆ มากกว่าหนึ่งรูปแบบ สามารถอธิบาย และทำนาย สิ่งที่ได้จากการสังเกตทดลอง ได้เท่าเทียมกัน หรือไม่ต่างกันมาก เราควรจะเลือกทฤษฎีที่ง่ายที่สุด หรือซับซ้อนน้อยที่สุดนั่นเอง

นักวิทยาศาสตร์ชื่อดังหลายท่านเห็นด้วยกับมีดโกนของออกคัมเช่นอัลเบิร์ต ไอน์สไตน์ หรือกาลิเลโอ กาลิเลอี ที่มองธรรมชาติเป็นสิ่งที่สวยงามดั่งศิลปะ

ตัวอย่างการนำไปใช้

ตัวอย่างที่ดีที่สุด ในการใช้มีดโกนของออกคัมคือ การที่นักวิทยาศาสตร์ชั้นนำในยุคฟื้นฟูศิลปะวิทยาการเชื่อว่าทฤษฎีของโคเปอร์นิคัสนั้นน่าเชื่อถือมากกว่าทฤษฎีโลกเป็นศูนย์กลางของอริสโตเติลและทอเลมี[2]

ในงานวิจัยด้านการเรียนรู้ของเครื่องในปัจจุบัน ได้นำใบมีดของออกคัมมาใช้อย่างกว้างขวาง[3][4][5] แต่มักจะเข้าใจผิดว่าทฤษฎีที่มีคำอธิบายสั้น คือทฤษฎีที่เรียบง่ายกว่า

อนึ่ง มีดโกนของออกคัมนี้ สามารถคำนวณออกมาในเชิงตัวเลข (หรือในเชิงปริมาณ ซึ่งสามารถสื่อสารกันได้อย่างเที่ยงตรงมากกว่าเชิงคุณภาพ) ได้ด้วยการใช้ทฤษฎีความน่าจะเป็นแบบเบย์ ในการอนุมาน[5][6] โดยมีหลักการว่าแบบจำลองที่ซับซ้อนมาก จะมีตัวแปรจำนวนมาก เพื่อให้ปรับค่าได้ยืดหยุ่นมาก ดังนั้นความน่าจะเป็นที่ตัวแปรจำนวนมากนั้น จะปรากฏเป็นค่าที่เข้ากับข้อมูลของเราได้อย่างลงตัวนั้นจึงน้อยกว่าแบบจำลองที่มีตัวแปรน้อย

ความเข้าใจผิดที่พบบ่อย

  1. "แบบจำลองที่ง่าย จะให้ความถูกต้องเหมาะสมกับข้อมูล มากกว่าแบบจำลองที่ซับซ้อน" ประโยคนี้ไม่เป็นจริง โดยทั่วไปแบบจำลองที่ซับซ้อน (มีพารามีเตอร์มากกว่า) จะให้ความถูกต้องกับข้อมูลไม่ด้อยกว่าแบบจำลองที่เรียบง่าย มีดโกนของออกคัม แนะนำให้เลือกแบบจำลองที่ง่าย ในกรณีที่แบบจำลองที่ซับซ้อน ให้ความถูกต้องได้ไม่ดีกว่าอย่างเห็นได้ชัดเท่านั้น[7]
  2. "แบบจำลองที่มีคำอธิบายสั้นกว่า คือแบบจำลองที่ซับซ้อนน้อยกว่า" ประโยคนี้ไม่เป็นจริงเสมอไป เนื่องจากความสั้นยาวของคำอธิบายของแบบจำลอง ขึ้นอยู่กับการเข้ารหัส หรือภาษาที่ใช้อธิบายโดยตรง ดังเช่นในทางคณิตศาสตร์ ถ้าเราจำกัดให้ภาษาของสมการของเรา มีเพียงสมการพหุนามแล้ว เราจำเป็นต้องใช้พจน์ของพหุนามเป็นจำนวนอนันต์ เพื่ออธิบายฟังก์ชันเอ็กซ์โพเนนเชียล ในขณะที่ถ้าภาษาของเรามีค่าคงที่ e เราก็จะสามารถอธิบายฟังก์ชันเอ็กซ์โพเนนเชียลได้ ด้วยตัวอักษรไม่กี่ตัว อย่างไรก็ตาม แม้ความยาวของทั้งสองสมการจะไม่เท่ากัน แต่สมการทั้งสองก็อธิบายแบบจำลองเดียวกัน ความยาวของคำอธิบาย จึงไม่สามารถบอกค่าความซับซ้อนของแบบจำลองได้โดยตรง

อนึ่งในการวัดความเรียบง่ายของ "แบบจำลอง" จาก "คำอธิบายแบบจำลอง" โดยตรง เราจำเป็นต้องใช้การเข้ารหัสแบบครอบจักรวาล (universal encoding) เพื่ออธิบายแบบจำลองนั้น งานวิจัยในด้านการวัดความซับซ้อนของแบบจำลองแบบสัมบูรณ์นี้ คืองานวิจัยเรื่องความซับซ้อนแบบโคโมลโกรอฟ ซึ่งถูกเสนอโดยนักคณิตศาสตร์ชื่อดังชาวรัสเซีย แอนเดร โคลโมโกรอฟ ในราว ค.ศ. 1960

อ้างอิง

แม่แบบ:Reflist

ดูเพิ่มเติม

แหล่งข้อมูลอื่น