ฟังก์ชันเป็นคาบ

จาก testwiki
ไปยังการนำทาง ไปยังการค้นหา

ฟังก์ชันเป็นคาบ (periodic function) ในทางคณิตศาสตร์หมายถึงฟังก์ชันที่ให้ผลลัพธ์ออกมาเป็นค่าที่ซ้ำกัน บนช่วงจำกัดหนึ่ง ๆ เรียกว่า คาบ ซึ่งบวกเข้ากับตัวแปรต้น ตัวอย่างในชีวิตประจำวันจะสามารถเห็นได้จากตัวแปรต้นที่เป็นเวลา เช่นเข็มนาฬิกาหรือข้างขึ้นข้างแรมของดวงจันทร์ จะแสดงพฤติกรรมที่ซ้ำกันเป็นช่วง ๆ

นิยาม

สำหรับฟังก์ชันบนจำนวนจริงหรือจำนวนเต็มที่ให้ค่าซ้ำกันเป็นช่วง ๆ นั่นหมายความว่ากราฟทั้งหมดของฟังก์ชันนั้นสามารถวาดได้จากการคัดลอกกราฟในช่วงที่ซ้ำกันต่อไปเรื่อย ๆ หรือในทางที่เจาะจงกว่านี้ ฟังก์ชัน f จะเรียกว่าฟังก์ชันเป็นคาบ บนทุก ๆ คาบ P ที่มากกว่าศูนย์ เมื่อ

f(x+P)=f(x)

สำหรับทุกค่าของ x ที่อยู่ในโดเมนของ f

และเมื่อ f เป็นฟังก์ชันเป็นคาบแล้ว จะได้

f(x+nP)=f(x)

สำหรับทุกค่าของ n ที่เป็นจำนวนเต็ม

ตัวอย่าง

กราฟของฟังก์ชันไซน์และโคไซน์

จากนิยามข้างต้น หากค่า P เท่ากับ 1 จะได้

f(x)=f(x+1)=f(x+2)=...

และเนื่องจากคาบของฟังก์ชันไม่จำเป็นต้องเป็นค่าที่น้อยที่สุด ดังนั้นค่า P สามารถเท่ากับ 2 ก็ได้

อีกตัวอย่างหนึ่งสามารถสังเกตได้จากฟังก์ชัน f ที่ให้ผลลัพธ์เป็น "เศษหลังจุดทศนิยม" ของตัวแปรต้น

f(0.5)=f(1.5)=f(2.5)=...=0.5

ซึ่งจะมีช่วงที่ซ้ำกันบนคาบ P ที่เท่ากับ 1 และกราฟของฟังก์ชันนี้เป็นรูปคลื่นฟันเลื่อย (sawtooth wave)

ในฟังก์ชันตรีโกณมิติ ไซน์และโคไซน์เป็นฟังก์ชันเป็นคาบอย่างหนึ่ง ซึ่งมีคาบเท่ากับ 2π