ฟอง

จาก testwiki
ไปยังการนำทาง ไปยังการค้นหา
ฟองอากาศใน สระว่ายน้ำ
ฟองก๊าซ ใน น้ำอัดลม
ฟองก๊าซใน บ่อโคลนเดือด
ฟองก๊าซใน บ่อน้ำมันดิน
ฟองสบู่แข็ง จากการเป่าฟองสบู่ในบริเวณที่มีอุณหภูมิบรรยากาศต่ำกว่าจุดเยือกแข็งมาก ๆ [1]
การเป่า(ฟอง)หมากฝรั่ง
ฟองที่เป็นตัวบ่งชี้ในระดับน้ำ

ฟอง (แม่แบบ:Langx) เป็นก้อนกลมหรือทรงกลมขนาดเล็ก ของสารหนึ่งในอีกสารหนึ่ง โดยทั่วไปหมายถึง ก๊าซในของเหลว[2] จึงมักเรียกว่า ฟองอากาศ ตามคำอธิบายของปรากฎการณ์มารันโกนี (Marangoni effect) ฟองอากาศอาจยังคงสภาพเหมือนเดิม แม้เมื่อลอยมาถึงพื้นผิวของสารที่มันแทรกตัวอยู่

ตัวอย่างทั่วไป

ฟอง มีให้เห็นหลายแห่งในชีวิตประจำวัน เช่น

  • ฟองที่เกิดจากการก่อตัวตกตะกอน (nucleation) ขึ้นเองตามธรรมชาติของคาร์บอนไดออกไซด์ ที่อิ่มตัวยิ่งยวดในน้ำอัดลม
  • ฟองของไอน้ำ ในน้ำเดือด
  • เมื่ออากาศ ผสมลงในน้ำที่อยู่ในสภาพปั่นป่วน เช่นกระแสน้ำใต้น้ำตก
  • ทะเลโฟม ซึ่งเป็นปรากฎการณ์ที่เกิดขึ้นโดยสภาพปั่นป่วนของน้ำทะเล โดยเฉพาะอย่างยิ่งเมื่อมีสารอินทรีย์โปรตีนลิกนินและไขมันที่ละลายในความเข้มข้นสูงกว่า จากแหล่งต่าง ๆ เช่น การสลายตัวนอกชายฝั่งของสาหร่ายสารประกอบเหล่านี้สามารถทำหน้าที่เป็นสารลดแรงตึงผิวหรือสารทำให้เกิดฟอง
  • ฟองสบู่
  • ฟองก๊าซ ที่เป็นผลของปฏิกิริยาทางเคมี เช่น เบกกิ้งโซดา รวมกับ น้ำส้มสายชู
  • ฟองของก๊าซที่ติดอยู่ในเนื้อแก้วระหว่างการผลิต
  • ฟองที่เป็นตัวบ่งชี้ในระดับน้ำ (precision level หรือ spirit level หรือ bubble level) — อุปกรณ์ที่ใช้สำหรับการวัดระดับความเอียงของระนาบ

ฟิสิกส์และเคมี

ฟองก่อตัวและรวมตัวกันเป็นรูปทรงกลม เนื่องจากรูปร่างเหล่านั้นอยู่ในสถานะพลังงานที่ต่ำกว่า สำหรับคำอธิบายทางฟิสิกส์และเคมี โปรดดู การก่อตัวตกตะกอน (nucleation)

ลักษณะ

ฟองอากาศ สามารถมองเห็นได้เนื่องจากมี ดัชนีการหักเหของแสง (RI) ที่แตกต่างจากสารโดยรอบ ตัวอย่างเช่น RI ของอากาศมีค่าประมาณ 1.0003 และ RI ของน้ำอยู่ที่ประมาณ 1.333 กฎของสเนลล์ อธิบายว่าการเปลี่ยนทิศทางคลื่นแม่เหล็กไฟฟ้าที่ส่วนต่อประสานระหว่างสองตัวกลางที่มีค่า RI ต่างกัน ดังนั้นจึงสามารถระบุฟองอากาศได้จากการหักเหของแสง และการสะท้อนกลับหมดของแสง แม้ว่าตัวกลางที่ถูกแช่และในน้ำจะมีความโปร่งใสก็ตาม

คำอธิบายข้างต้นอธิบายเฉพาะฟองของสื่อหนึ่งที่จมอยู่ในตัวกลางอื่นเท่านั้น (เช่น ฟองก๊าซในน้ำอัดลม) ปริมาตรของฟองเมมเบรน (เช่นฟองสบู่) จะไม่บิดเบือนแสงมากนักและสามารถมองเห็นฟองเมมเบรนเนื่องจากการแทรกสอดในฟิล์มบาง (thin-film diffraction) และการสะท้อนแสงสมบูรณ์ (specular reflection)

การประยุกต์ใช้งาน

การก่อตัวตกตะกอน (nucleation) สามารถเกิดขึ้นได้โดยเจตนาเช่น การสร้าง bubblegram ในของแข็ง

ในการถ่ายภาพอัลตราซาวนด์ทางการแพทย์จะใช้ฟองอากาศห่อหุ้มขนาดเล็กที่เรียกว่า คอนทราสต์เอเจนต์ เพื่อเพิ่มความคมชัด

ในการพิมพ์แบบอิงค์เจ็ท ฟองไอของน้ำหมึกเป็นตัวกระตุ้น บางครั้งใช้เป็นตัวกระตุ้นให้ทำงานในงานไมโครฟลูอิดิกส์ อื่น ๆ ได้แก่ ในงานอณูชีววิทยา เช่น การวิเคราะห์ดีเอ็นเอ [3]

การสลายตัวอย่างรุนแรงของฟองอากาศ (โพรงอากาศ) ใกล้พื้นผิวที่เป็นของแข็ง และผลของการเกิดไอพ่นปะทะ (การย้อยกลับของกระแสก๊าซหรือของเหลวที่พ่นออกมาอย่างรวดเร็วก่อนหน้า) ที่เกิดขึ้นนำไปใช้เป็นกลไกของการทำความสะอาดด้วยคลื่นเสียงความถี่สูง ปรากฎการณ์เดียวกันนี้ในขนาดที่ใหญ่กว่าใช้ในอาวุธระเบิดแบบวิ่งเข้าหาเป้า เช่น บาซูก้า และตอร์ปิโด กุ้งดีดขันยังใช้ผลของฟอง (โพรง) ที่ยุบตัวเป็นอาวุธ ผลเดียวกันนี้ใช้ในการรักษานิ่วในไตซึ่งเรียกว่าการใช้คลื่นเสียงนอกกายสลายนิ่ว (extracorporeal shock wave lithotripsy, ESWL) สัตว์เลี้ยงลูกด้วยนมในทะเลเช่น โลมา และ วาฬ ใช้ฟองอากาศเพื่อความบันเทิงหรือเป็นเครื่องมือช่วยล่าเหยื่อ เครื่องเติมอากาศ (aerator) ใช้หลักการนี้โดยทำให้เกิดการสลายตัวของก๊าซในของเหลว โดยการฉีดฟองอากาศซึ่งเพิ่มแรงดันของน้ำในขณะที่ใช้ปริมาณน้ำลดลง

วิศวกรเคมี และ วิศวกรโลหการ อาศัยฟองอากาศในการปฏิบัติงาน เช่นการกลั่น การดูดซับ การลอยตัว และการทำแห้งแบบพ่นฝอย กระบวนการที่ซับซ้อนเหล่านี้มักต้องคำนึงถึง มวล การถ่ายเทความร้อน และการสร้างโดยการจำลองแบบจากหลักพลศาสตร์ของไหล [4]

ตุ่นจมูกดาว และหนูผี สามารถดมกลิ่นใต้น้ำได้โดยหายใจเข้าทางรูจมูกอย่างรวดเร็วและทำให้เกิดฟอง [5]

การไหลเป็นจังหวะ

เมื่อฟองอากาศถูกรบกวน (เช่น เมื่อฉีดฟองก๊าซใต้น้ำ) ผนังฟองจะสั่น ซึ่งมักสังเกตเห็นได้ยากจากการถูกบดบังของการวิรูปของทรงฟอง (การเสียรูปของฟอง) ที่เห็นได้ง่ายกว่าจากขนาดของปรากฏการณ์ที่มีขนาดใหญ่กว่ามาก องค์ประกอบของการแกว่งจะเปลี่ยนปริมาตรของฟอง (หมายถึงการไหลที่เป็นจังหวะ เช่น ชีพจร) ในกรณีควบคุมที่ไม่มีสนามเสียงจากภายนอกรบกวนจะทำให้เกิดความถี่ธรรมชาติของฟอง การไหลเป็นจังหวะเป็นองค์ประกอบที่สำคัญที่สุดในการแกว่ง (oscillation) จากการเปลี่ยนปริมาตรของก๊าซจะทำให้ความดันเปลี่ยนไปเป็น และนำไปสู่การเปล่งเสียงสะท้อน (emission of sound) ตามความถี่ธรรมชาติของฟอง สำหรับฟองอากาศในน้ำฟองอากาศขนาดใหญ่ (ในสภาวะความตึงผิวและการนำความร้อน ที่เล็กน้อย) จะผ่านการไหลเป็นจังหวะแบบอะเดียแบติก ซึ่งหมายความว่าจะไม่มีการถ่ายเทความร้อนจากของเหลวไปยังก๊าซหรือในทางกลับกัน ความถี่ธรรมชาติของฟองดังกล่าวถูกกำหนดโดยสมการ: [6] [7]

f0=12πR03γp0ρ

ตัวแปร :

สำหรับฟองอากาศในน้ำ ฟองอากาศขนาดเล็กกว่าจะผ่านการไหลเป็นจังหวะในกระบวนไอโซเทอร์มอล (กระบวนการเปลี่ยนแปลงที่อุณหภูมิคงที่ ความดันและปริมาตรจะเปลี่ยนไป) สมการที่สอดคล้องกันสำหรับฟองอากาศขนาดเล็กของแรงตึงผิว σ (ในสภาวะความหนืดของของเหลวมีเล็กน้อย) คือ [7]

f0=12πR03p0ρ+4σρR0

ฟองอากาศที่กลอกกลิ้งจากการติดอยู่ใต้ผิวน้ำ เป็นที่มาของเสียงของเหลวที่สำคัญ เช่น ฟองอากาศภายในข้อนิ้วของเราและเสียงของการหักข้อนิ้ว [8] หรือ เมื่อเม็ดฝน กระทบผิวน้ำ [9][10]

สรีรวิทยาและการแพทย์

การบาดเจ็บจากการเกิดฟองและพองโตในเนื้อเยื่อของร่างกาย จากกลไกของโรคจากการลดความกดอากาศ หรือ โรคน้ำหนีบ (decompression sickness) ซึ่งเกิดขึ้นเมื่อเนื้อเยื่อต่าง ๆ ของร่างกายได้รับก๊าซเฉื่อย (ก๊าซไนโตรเจน) ภายใต้ความกดดัน (การดำน้ำของนักดำน้ำทั่วไปเป็นอากาศอัด) จนเกิดภาวะอิ่มตัวอย่างยิ่งยวด เมื่อมีการลดความกดดันอย่างรวดเร็ว (การดำขึ้นสู่ผิวน้ำ) เนื้อเยื่อจึงคายก๊าซไนโตรเจนที่เกินออกเกิดเป็นฟองอากาศ และเข้าสู่ระบบต่าง ๆ ของร่างกายรวมทั้งระบบการไหลเวียนของเส้นเลือด ฟองก๊าซเกิดขึ้นเกินกว่าความสามารถของร่างกายที่จะกำจัดได้ ทำให้เนื้อเยื่อและหลอดเลือดได้รับบาดเจ็บและเกิดการอักเสบจากการเบียดแทรก บีบกด จากฟองอากาศ หรือการขวางการไหลเวียนของหลอดเลือด เนื้อเยื่อเกิดการขาดเลือด และเกิดการอุดตันในส่วนต่าง ๆ ของร่างกาย[11]

ภาวะฟองอากาศอุดหลอดเลือด สามารถเกิดขึ้นได้เมื่อฟองอากาศถูกนำเข้าสู่ระบบไหลเวียนโลหิต และฟองอากาศหลุดเข้าไปอยู่ในเส้นเลือดซึ่งมีขนาดเล็กเกินกว่าที่ฟองนั้นจะผ่านได้ ภายใต้ความแตกต่างของความดัน ภาวะฟองอากาศอุดหลอดเลือดอาจเกิดขึ้นจากการรักษาอาการโรคจากการลดความกดอากาศโดยการบำบัดด้วยแรงดันบรรยากาศสูง (hyperbaric exposure) หรือการบาดเจ็บจากการขยายมากเกินไปของปอด (การบาดเจ็บจากแรงกดดัน) หรือเกิดในระหว่างการฉีดเข้าหลอดเลือดดำ หรือระหว่างการผ่าตัด

ดูเพิ่ม

อ้างอิง

  1. Dailymail Watch bubbles FREEZE in slow motion: Ultra HD cameras capture delicate structures turning into ice before shattering สืบค้นเมื่อ 22 ธันวาคม 2563.
  2. แม่แบบ:Cite book
  3. R. J. Dijkink, J. P. van der Dennen, C. D. Ohl, A. Prosperetti,The ‘acoustic scallop’: a bubble-powered actuator, J. Micromech.
  4. แม่แบบ:Cite book
  5. แม่แบบ:Cite web
  6. Minnaert, Marcel, On musical air-bubbles and the sounds of running water, Phil.
  7. 7.0 7.1 Leighton, Timothy G., The Acoustic Bubble (Academic, London, 1994).
  8. แม่แบบ:Cite journal
  9. แม่แบบ:Cite journal
  10. แม่แบบ:Cite web
  11. งานเวชศาสตร์ใต้น้ำ โรงพยาบาลวชิระภูเก็ต การเจ็บป่วยจากการดำน้ำแม่แบบ:ลิงก์เสีย 29 พฤศจิกายน 2554.