จานรอบดาวฤกษ์

จาก testwiki
ไปยังการนำทาง ไปยังการค้นหา
จานรอบดาว HD 141943 และ HD 191089 ภาพด้านล่างเป็นภาพประกอบจากภาพจริงด้านบน[1]

จานรอบดาวฤกษ์ (แม่แบบ:Langx) คือ จานพอกพูนมวลของสสารที่มีรูปทรงเป็นทอรัส, แพนเค้กหรือวงแหวน ประกอบด้วย แก๊ส, ฝุ่นคอสมิก, เศษดาวเคราะห์, ดาวเคราะห์น้อยและเศษชิ้นส่วนจากการชนในวงโคจรรอบดาวฤกษ์ รอบ ๆ ดาวฤกษ์ที่อายุน้อยที่สุด พวกมันเป็นแหล่งกักเก็บสสารที่ดาวเคราะห์อาจก่อตัวขึ้นมา สำหรับดาวฤกษ์ที่มีอายุ พวกมันบ่งชี้ว่ามีการก่อตัวของเศษดาวเคราะห์ และรอบ ๆ ดาวแคระขาว พวกมันบ่งชี้ว่าสสารของดาวเคราะห์รอดพ้นจากการวิวัฒนาการของดาวฤกษ์ทั้งหมด จานดังกล่าวสามารถแสดงออกมาได้หลายรูปแบบ

ลักษณะของจานรอบดาวฤกษ์แต่ละแบบ

ไฟล์:A Stars Spiral.ogv

ดาวฤกษ์อายุน้อย

แม่แบบ:หลัก ในทฤษฎีมาตรฐานของการก่อตัวของดาวฤกษ์นั้น ดาวฤกษ์อายุน้อย (หรือดาวฤกษ์ก่อนเกิด) เกิดจากการหดตัวด้วยความโน้มถ่วงของมวลสารบางส่วนภายในเมฆโมเลกุลขนาดยักษ์ วัสดุที่ถูกดึงดูดให้เข้ามารวมตัวกันนี้มีโมเมนตัมเชิงมุม และก่อตัวเป็นจานดาวเคราะห์ก่อนเกิดที่มีก๊าซเป็นส่วนประกอบขึ้นมาล้อมรอบดาวฤกษ์อายุน้อยที่กำลังหมุนรอบตัวเอง จานรอบดาวฤกษ์ที่ก่อตัวขึ้นประกอบไปด้วยก๊าซและฝุ่นหนาแน่น และยังคงมีสสารโดนดูดเข้าไปยังใจกลางดาวอยู่เรื่อย ๆ แผ่นจานมีมวลเพียงไม่กี่เปอร์เซ็นต์ของมวลดาวฤกษ์ใจกลาง และก๊าซส่วนใหญ่ซึ่งเป็นองค์ประกอบหลักคือไฮโดรเจน เหตุการณ์การพอกพูนจะกินเวลานานหลายล้านปี โดยปกติแล้วมวลจะค่อย ๆ ถูกดึงดูดเข้าไปสั่งสมบนดาวที่ใจกลางเรื่อย ๆ ประมาณ 1 ส่วนสิบล้านเท่าไปจนถึง 1 ส่วนพันล้านเท่าของมวลดวงอาทิตย์ต่อปีแม่แบบ:R

แผ่นจานจะค่อย ๆ เย็นตัวลงในช่วงที่ยังเป็นวัตถุดาวฤกษ์อายุน้อย อนุภาคฝุ่นที่ประกอบจากหินและน้ำแข็งจะก่อตัวขึ้นภายในจาน และอาจเกาะรวมตัวกันแล้วกลายเป็นดาวเคราะห์ในที่สุด หากมวลของจานมีมากพอ การเกาะรวมตัวกันจะยิ่งเร่งขึ้นไปอีกและเกิดเป็นวัตถุต้นกำเนิดดาวเคราะห์ขึ้น การก่อตัวของระบบดาวเคราะห์เป็นผลตามธรรมชาติของกระบวนการก่อตัวดาวฤกษ์ สำหรับดาวฤกษ์แบบคล้ายดวงอาทิตย์ โดยปกติจะใช้เวลาประมาณ 100 ล้านปีในการวิวัฒนาการไปสู่แถบลำดับหลัก

สำหรับดาวฤกษ์มวลค่อนข้างต่ำเช่นดาวฤกษ์ชนิด ที วัวนั้นโดยทั่วไปจะมีแผ่นจานรอบดาวฤกษ์อยู่ อย่างไรก็ตาม ในดาวที่มีมวลมากกว่านั้น เช่น ดาวเฮอร์บิก เออี/บีอีนั้น คาดว่าความดันรังสีจากดาวฤกษ์ใจกลางจะแรงมากและเป็นตัวขัดขวางการก่อตัวของจาน อย่างไรก็ตาม การศึกษาล่าสุดได้ให้หลักฐานทั้งทางทฤษฎีและเชิงสังเกตการณ์สำหรับการก่อตัวของจานรอบดาวเฮอร์บิก เออี/บีอี ซึ่งถูกตรวจพบโดยตรงเช่นกันแม่แบบ:R นอกจากนี้ยังมีผลลัพธ์ที่บ่งชี้ถึงการมีอยู่ของจานในดาวฤกษ์อายุน้อยที่มีมวลสูงกว่านี้อีกด้วยแม่แบบ:R

ดาวฤกษ์ในแถบลำดับหลัก

ภาพวาดในจินตนาการของจานช่วงเปลี่ยนผ่านรอบดาวฤกษ์อายุน้อยแม่แบบ:R

เมื่อดาวฤกษ์วิวัฒนาการเข้าสู่ช่วงลำดับหลัก จานรอบดาวฤกษ์จะค่อย ๆ หายไป ส่วนใหญ่แล้วจะหายไปจากกระบวนการการระเหยด้วยแสง ในขั้นตอนนี้ ถ้ามีจานรอบดาวฤกษ์อยู่มักจะเป็นจานที่อยู่แค่ชั่วคราว หลังจากที่อนุภาคที่เล็กละเอียดกว่าส่วนใหญ่ได้สูญเสียไปโดยปรากฏการณ์พอยน์ติง–รอเบิร์ตสัน ความดันรังสี ฯลฯ ฝุ่นจากการกระทบของวัตถุท้องฟ้าจะก่อตัวเป็นจานเศษซากขึ้นแม่แบบ:R แม่แบบ:Multiple image ในช่วงลำดับหลัก จานรอบดาวฤกษ์ประเภทต่าง ๆ นั้นเป็นที่รู้จักกันดีว่าวิวัฒนาการมาจากจานก่อกำเนิดดาวเคราะห์ ตัวอย่างเช่น มีจานรอบดาวฤกษ์ชนิดบีอี ซึ่งกลไกการก่อตัวไม่ชัดเจนแม่แบบ:R

ตัวอย่างในระบบสุริยะ

เศษซากต่าง ๆ ที่ประกอบขึ้นเป็นแผ่นจานในระบบสุริยะประกอบไปด้วย:

หลังจากพ้นลำดับหลัก

จานรอบระบบดาวคู่ IRAS 08544-4431แม่แบบ:R

มวลสารรอบดาวฤกษ์ที่พบรอบดาวฤกษ์ที่พ้นจากลำดับหลักมาแล้วนั้นเกิดจากการขับมวลออกจากดาวฤกษ์ใจกลาง มวลสารรอบดาวฤกษ์นั้นมีรูปร่างหลากหลายตั้งแต่เปลือกสมมาตรทรงกลมไปจนถึงโครงสร้างที่มีสมมาตรแบบหมุนคล้ายแผ่นจาน โครงสร้างของมวลสารรอบดาวฤกษ์ของดาวยักษ์ในแขนงดาวยักษ์เชิงเส้นกำกับนั้นเกือบจะเป็นทรงกลมเมื่อดูในภาพรวม แต่เมื่อวิวัฒนาการต่อไปจนกลายเป็นเนบิวลาดาวเคราะห์ มักจะแสดงรูปร่างที่มีสมมาตรแบบหมุน เช่น แผ่นจานรีหรือเป็นเส้นกระจายออกไปจากสองขั้วเหนือใต้ ดาวฤกษ์หลังแขนงยักษ์เชิงเส้นกำกับซึ่งเป็นช่วงที่อยู่ในระหว่างวิวัฒนาการช่วงนั้นถูกคาดการณ์กันมานานแล้วว่าน่าจะมีจานรอบดาวฤกษ์ และเพิ่งจะมีการพบหลักฐานโดยตรง

ตัวอย่างเช่น จากการสังเกตการณ์อินเทอร์เฟอโรเมทรีที่มีความละเอียดสูงได้ตรวจพบจานรอบดาวฤกษ์ที่มีเส้นผ่านศูนย์กลางภายในเท่ากับ 10 AU รอบดาว IRAS 08544-4431 ซึ่งเป็นดาวฤกษ์หลังวิวัฒนาการผ่านแขนงยักษ์เชิงเส้นกำกับแม่แบบ:R คาดกันว่าโครงสร้างคล้ายแผ่นจานที่พบในดาวฤกษ์ระยะสุดท้ายนั้นมีความเกี่ยวข้องกับระบบดาวคู่ รวมถึงสำหรับกรณีของ IRAS 08544-4431 นี้ก็เช่นเดียวกัน

ภาพวาดในจินตนาการของดาวยักษ์ใหญ่ B[e] CPD-57 2874 ซึ่งตรวจพบหลักฐานโดยตรงถึงการมีอยู่ของแผ่นจานโดย VLBIแม่แบบ:R

แม้ว่าจะตรวจพบโครงสร้างรอบดาวฤกษ์ที่ไม่มีความสมมาตรเป็นทรงกลมในดาวฤกษ์มวลมากที่วิวัฒนาการแล้วจำนวนมาก แต่ก็ไม่พบหลักฐานโดยตรงว่ามีแผ่นจานอยู่ หลักฐานทางอ้อมบ่งชี้ว่าดาวประเภทที่เป็นไปได้มากที่สุดที่จะมีจานรอบดาวคือดาว B[e]แม่แบบ:R ซึ่งมีการหมุนรอบตัวเองอย่างรวดเร็วและอาจเป็นต้นกำเนิดแสงวาบรังสีแกมมา เป็นไปได้ที่จะก่อให้เกิดการสั่งสมมวลสารบนแถบเส้นศูนย์สูตรของดาว

ช่วงปลายชีวิตดาวฤกษ์

มีการพบว่าดาวแคระขาวบางดวงมีการแผ่รังสีในช่วงอินฟราเรดมากเป็นพิเศษ ซึ่งเชื่อว่ามีสาเหตุมาจากแผ่นจานรอบดาวฤกษ์ที่ประกอบขึ้นจากฝุ่นแม่แบบ:R ฝุ่นที่ประกอบเป็นจานนั้นเชื่อว่าเป็นซากของวัตถุท้องฟ้าซึ่งครั้งหนึ่งเคยก่อตัวเป็นระบบดาวเคราะห์ เช่น ดาวเคราะห์น้อยแม่แบบ:R

นอกจากนี้ ดาวมวลอัดแน่นอย่าง ดาวแคระขาว ดาวนิวตรอน และ หลุมดำ โดยเฉพาะอย่างยิ่งในวัตถุท้องฟ้าซึ่งดาวปฐมภูมิของระบบดาวคู่แบบใกล้ชิดได้ถึงจุดสิ้นสุดและกลายเป็นดาวมวลอัดแน่นไปแล้ว ก๊าซจะหมุนรอบดาวมวลอัดแน่นไปในขณะที่ค่อย ๆ ตกลงสู่ในกลางเรื่อย ๆ ซึ่งอาจเกิดเป็นจานพอกพูนมวลขึ้นแม่แบบ:หลัก

ระบบดาวคู่

ภาพวาดในจินตนาการของก๊าซและฝุ่นรอบดาว GG Tauriแม่แบบ:R

เมื่อเกิดการรวบรวมก๊าซขึ้นในระบบดาวคู่ ก็อาจก่อตัวเป็นจานขึ้นมาในระบบดาวคู่นั้นได้ ระบบดาวคู่ที่สั่งสมก๊าซซึ่งมีโมเมนตัมเชิงมุมมักจะก่อตัวเป็นจานได้ง่ายแม่แบบ:R จานในระบบดาวคู่อาจแบ่งออกเป็น 3 ประเภท

  • จานรอบดาวปฐมภูมิ (ดาวฤกษ์มวลมากกว่าใน 2 ดวง) สามารถก่อตัวขึ้นได้หากก๊าซที่สะสมมีโมเมนตัมเชิงมุมอยู่แม่แบบ:R
  • จานรอบดาวทุติยภูมิ (ดาวฤกษ์มวลน้อยกว่า) โดยปกติจะไม่สามารถก่อตัวได้ เว้นแต่ก๊าซที่สั่งสมจะมีโมเมนตัมเชิงมุมสูงเพียงพอ ขนาดโมเมนตัมเชิงมุมที่จำเป็นนั้นจะพิจารณาจากอัตราส่วนมวลของดาวฤกษ์ปฐมภูมิต่อดาวฤกษ์ทุติยภูมิ
  • จานรอบดาวคู่ (circumbinary disc) เป็นจานที่ก่อตัวขึ้นล้อมรอบทั้งดาวปฐมภูมิและดาวทุติยภูมิ โดยมีเส้นผ่านศูนย์กลางภายในใหญ่กว่าวงโคจรของดาวคู่ เชื่อกันว่าจานรอบดาวคู่มีมวลสูงสุดอยู่ที่ 0.5% ของมวลดวงอาทิตย์แม่แบบ:Rแม่แบบ:R ระบบดาวที่มีจานรอบดาวคู่อยู่ได้แก่ GG Tauri เป็นต้นแม่แบบ:R

จานมักมีลักษณะสมมาตรและก่อตัวในระนาบการโคจรของระบบดาวคู่ แต่อาจได้รับผลกระทบจากปรากฏการณ์ของบาร์ดีน–เพตเตอร์สันแม่แบบ:R สนามแม่เหล็กขั้วคู่ที่ไม่สม่ำเสมอแม่แบบ:R ความดันรังสีแม่แบบ:R และแรงน้ำขึ้นลงแม่แบบ:R ทำให้แผ่นจานอาจบิดตัวหรือเอียง ตัวอย่างของจานแบบเอียงสามารถพบได้ใน Her X-1, SS 433 เป็นต้น การแผ่รังสีเอกซ์จะลดลงและเพิ่มขึ้นเป็นคาบ 30 ถึง 300 วัน ซึ่งนานกว่าคาบการโคจรของดาวคู่มากแม่แบบ:R สันนิษฐานว่าเกิดจากการหมุนควงของจานรอบดาวฤกษ์ปฐมภูมิหรือจานรอบดาวคู่ ซึ่งโดยปกติจะโคจรกลับทิศเมื่อเทียบกับวงโคจรของดาวคู่

วิวัฒนาการของจานรอบดาวฤกษ์

จานฝุ่นรอบดาวฤกษ์อายุน้อย HD 100546 ซึ่งคาดว่าเป็นจานช่วงเปลี่ยนถ่ายแม่แบบ:R
วงแหวนฝุ่นรอบดาวฤกษ์อายุน้อย HD 141569แม่แบบ:R
วงแหวนฝุ่นบาง ๆ รอบดาว HR 4796แม่แบบ:R
จานก๊าซและฝุ่นรอบดาวฤกษ์อายุน้อย HD 163296 ส่วนที่เห็นเป็นช่องว่างภายในแผ่นจานเกิดจากการที่ก๊าซและฝุ่นหายไป ซึ่งคาดว่าเกิดจากการที่มีดาวเคราะห์ก่อตัวขึ้นแม่แบบ:R

วิวัฒนาการของจานรอบดาวฤกษ์อาจแบ่งออกเป็นหลายขั้นตอนตามการเปลี่ยนแปลงตามช่วงวิวัฒนาการของโครงสร้างและส่วนประกอบหลัก

วิธีการจำแนกแบบหนึ่งคือดูที่ขนาดของอนุภาค เช่น ฝุ่น ซึ่งเป็นส่วนประกอบหลักของจาน โดยเฉพาะอย่างยิ่ง มีระยะที่อนุภาคขนาด 1 μm ลงมาเป็นองค์ประกอบหลัก, ระยะที่อนุภาคเติบโตกลายเป็นอนุภาคขนาดใหญ่ขึ้น, ระยะที่มีความหนาแน่นมากขึ้นและก่อตัวเป็นดาวเคราะห์ก่อนเกิด และ ระยะที่เติบโตต่อไปอีกจนเกิดเป็นระบบดาวเคราะห์ขึ้น

อีกทางเลือกหนึ่ง จากปริมาณของก๊าซและแบบจำลองของการก่อตัวดาวทางทฤษฎี อาจจำแนกออกเป็น 3 ขั้นตอนดังนี้

  • จานดาวเคราะห์ก่อนเกิด เป็นจานที่มีสสารดั้งเดิมจำนวนมาก เช่น ก๊าซและฝุ่น ซึ่งอาจก่อตัวเป็นดาวเคราะห์
  • จานช่วงเปลี่ยนผ่าน คือจานที่ก๊าซและฝุ่นหมดลงและอยู่ในตำแหน่งระหว่างจานก่อกำเนิดดาวเคราะห์และจานเศษซาก ขนาดของอนุภาคฝุ่นจะใหญ่กว่าขนาดของจานดาวเคราะห์ก่อนเกิด และความหนาของเส้นรอบวงรอบนอกของจานก็ลดลงด้วย เมื่อวิวัฒนาการดำเนินไป จะมีรูปรากฏขึ้นตรงกลางของจาน
  • จานเศษซาก เป็นจานที่ประกอบด้วยฝุ่นละเอียด และก๊าซที่เกิดจากการชนกันและการกลายเป็นไอ โดยอาจมีก๊าซอยู่เพียงเล็กน้อยหรือในบางกรณีอาจไม่มีเลย ก๊าซที่มีอยู่ก่อนและอนุภาคฝุ่นขนาดเล็กจะกระจายหายไปหรือถูกจับโดยดาวเคราะห์

ในระบบสุริยะ ฝุ่นระหว่างดาวเคราะห์ในระนาบวงโคจรของดาวเคราะห์ (สุริยวิถี) ที่เกิดจากการชนกันของดาวเคราะห์น้อยหรือการกลายเป็นไอของดาวหางสามารถเห็นเป็นแสงจักรราศีจากบนโลก

นอกจากนี้ ในระหว่างการวิวัฒนาการจากจานดาวเคราะห์ก่อนเกิดไปสู่จานเศษซาก สามารถสังเกตเห็นการลดลงของจำนวนอนุภาคฝุ่นขนาดเล็กระดับมิลลิเมตรในบริเวณรอบนอกของจานการเพิ่มขึ้นของปริมาณฝุ่นอุณหภูมิสูงในบริเวณวงในของจาน และการหายไปของก๊าซแม่แบบ:R

กระบวนการกระจายหายไป

หนึ่งในปรากฏการณ์สำคัญที่เกิดจากวิวัฒนาการของจานรอบดาวคือการกระจายหายไปของมวลสาร การวิจัยศึกษากระบวนการกระจายหายไปของมวลสารในแต่ละขั้นตอนวิวัฒนาการของจานรอบดาว ร่วมกับข้อมูลเกี่ยวกับมวลของดาวฤกษ์ใจกลางนั้น จะให้เบาะแสเกี่ยวกับมาตราส่วนเวลาวิวัฒนาการ ตัวอย่างเช่น จากผลการสังเกตการณ์กระบวนการกระจายหายไปของมวลสารในจานช่วงเปลี่ยนผ่าน (จานที่มีรูภายในแม่แบบ:R) ได้ประมาณอายุเฉลี่ยของจานรอบดาวฤกษ์ไว้ประมาณ 10 ล้านปีแม่แบบ:R

ยังไม่มีทฤษฎีที่เป็นที่ยอมรับแน่ชัดเกี่ยวกับกลไกของกระบวนการกระจายหายไป รวมถึงช่วงระยะหรือมาตราส่วนเวลาที่กระบวนการกระจายหายไปเกิดขึ้น มีการเสนอสมมติฐานหลายข้อและลักษณะเชิงสังเกตการณ์ที่คาดการณ์ไว้ของจานเพื่ออธิบายกระบวนการกระจายหายไปของจานรอบดาวฤกษ์ สมมติฐานหลัก ๆ เช่น ฝุ่นจะทึบแสงน้อยลงเมื่อเติบโตเป็นอนุภาคขนาดใหญ่ขึ้นจึงสังเกตได้ยากขึ้นแม่แบบ:R หรืออาจเกิดจากการระเหยด้วยแสงเนื่องจากโฟตอนของรังสีเอกซ์และรังสีอัลตราไวโอเลตที่มาจากดาวที่ใจกลาง (หรือ ลมดาวฤกษ์)แม่แบบ:R หรืออาจเป็นเพราะได้รับอิทธิพลดาวเคราะห์ยักษ์ที่ก่อกำเนิดขึ้นภายในจานแม่แบบ:R

ระยะเวลาของกระบวนการกระจายหายไปนั้นคาดว่าจะค่อนข้างสั้น มีวัตถุท้องฟ้าที่ดูเหมือนว่าจะเกิดการกระจายหายไปทั้งวงด้านในและวงรอบนอกของจานรอบดาวฤกษ์เกือบพร้อม ๆ กัน หรืออาจเริ่มกระจายหายไปจากส่วนด้านในแล้วไล่ไปยังด้านนอก โดยคาดว่าอาจใช้เวลาประมาณ 5 แสนปีตั้งแต่เริ่มเกิดการกระจายจนหายไปหมดแม่แบบ:R

วิวัฒนาการทางกลศาสตร์

จานรอบดาวฤกษ์จะไม่อยู่ในสภาวะสมดุล โดยจะค่อย ๆ เสียสมดุลและเกิดการเปลี่ยนแปลงไป ความหนาแน่นต่อพื้นที่จาน σ คำนวณได้จาก

Σt=3rr[r1/2ruΣr1/2]

ในที่นี้ r คือระยะห่างแนวรัศมีจากจุดศูนย์กลางของจาน ส่วน u แสดงค่าความหนืด ที่ตำแหน่ง rแม่แบบ:R สมการนี้ถือว่าแผ่นจานเป็นแบบมีแกนสมมาตร ไม่มีความแตกต่างในโครงสร้างตามแนวความหนาของแผ่นจาน

ความหนืดของจาน ซึ่งอาจเกิดขึ้นจากตัวโมเลกุล หรือความปั่นป่วน จะทำให้เกิดการสูญเสียโมเมนตัมเชิงมุมไปยังด้านนอกของจาน แล้วในที่สุดจะทำให้มวลจำนวนมากไปพอกพูนเข้าที่ส่วนดาวฤกษ์ใจกลางแม่แบบ:R อัตราการเพิ่มมวลสู่ดาวฤกษ์ใจกลาง M˙ ขึ้นอยู่กับค่าความหนืด u โดยคำนวณได้ดังนี้

M˙=3πuΣ[1rinr]1

ในที่นี้ rin คือเส้นผ่านศูนย์กลางด้านในของแผ่นจาน

อ่านเพิ่ม

แม่แบบ:สถานีย่อย

อ้างอิง

แม่แบบ:รายการอ้างอิง

บรรณานุกรม

แม่แบบ:เริ่มอ้างอิง

แม่แบบ:จบอ้างอิง

แหล่งข้อมูลอื่น