ความไวและความจำเพาะ

จาก testwiki
ไปยังการนำทาง ไปยังการค้นหา

ความไวและความจำเพาะ เป็นค่าวัดทางสถิติที่ใช้ประเมินประสิทธิภาพของการทดสอบที่ให้ผลเป็นสองส่วน (เช่นเป็นบวกและลบ) โดย

  • ความไว[1] (แม่แบบ:Langx) คือสัดส่วนของผลบวกที่เป็นจริงสำหรับภาวะนั้น ๆ (เช่น สัดส่วนของการตรวจพบโรคในผู้ที่ป่วยจริง) มีไวพจน์เป็นคำอื่น ๆ รวมทั้ง อัตราผลบวกจริง (true positive rate), recall, probability of detection ซึ่งใช้ในสาขาต่าง ๆ[2]
  • ความจำเพาะ[3] (แม่แบบ:Langx) คือสัดส่วนของผลลบที่เป็นจริงสำหรับภาวะนั้น ๆ (เช่น สัดส่วนของการตรวจไม่พบโรคในผู้ที่ไม่ป่วย) มีไวพจน์เป็นคำอื่น ๆ รวมทั้ง อัตราผลลบจริง (true negative rate)

ความไวจึงมีประโยชน์ในการวินิจฉัยแยกกันผลลบปลอม (false negative) เพราะว่าการทดสอบยิ่งไวเท่าไร โอกาสการได้ผลลบ (เช่น การพบว่าไม่มีโรค) ที่ไม่เป็นจริง (เช่น บุคคลจริง ๆ มีโรค) ก็น้อยลงเท่านั้น และดังนั้น ถ้าความไวอยู่ที่ 100% โอกาสได้ผลลบปลอมก็อยู่ที่ 0%[4] และความจำเพาะจึงมีประโยชน์ในการยืนยันภาวะที่มี โดยกันผลบวกปลอม (false positive) เพราะว่าการทดสอบยิ่งจำเพาะเท่าไร โอกาสการได้ผลบวก (เช่น การพบว่ามีโรค) ที่ไม่เป็นจริง (เช่น บุคคลจริง ๆ ไม่มีโรค) ก็น้อยลงเท่านั้น และดังนั้น ถ้าความจำเพาะอยู่ที่ 100% โอกาสได้ผลบวกปลอมก็อยู่ที่ 0%[4]

ในการทดสอบหนึ่ง ๆ ปกติจะต้องแลกเปลี่ยนข้อดีข้อเสีย ยกตัวอย่างเช่น เพื่อความปลอดภัยของท่าอากาศยาน เครื่องตรวจโลหะอาจจะตั้งให้ส่งสัญญาณเตือนแม้สำหรับวัตถุที่เสี่ยงน้อย เช่น หัวเข็มขัดหรือลูกกุญแจ (คือการตรวจมีความจำเพาะต่ำ) เพื่อลดโอกาสเสี่ยงพลาดวัตถุอันตราย (คือการตรวจมีความไวสูง) การแลกเปลี่ยนข้อดีข้อเสียเช่นนี้สามารถแสดงในกราฟเส้นโค้ง receiver operating characteristic (ROC) การทดสอบที่สมบูรณ์จะไว 100% (เช่น คนป่วยทั้งหมดมีผลบวก) และจำเพาะ 100% (เช่น คนปกติทั้งหมดมีผลลบ) แต่ว่า โดยทฤษฎีแล้ว การทดสอบทุกอย่างจะมีขอบเขตความผิดพลาดต่ำสุดที่เรียกว่า Bayes error rate

นิยาม

ศัพท์เฉพาะและคำอนุพันธ์
จาก confusion matrix
true positive (TP)
เท่ากับ hit
true negative (TN)
เท่ากับ correct rejection
false positive (FP)
เท่ากับ false alarm, ความผิดพลาดชนิดที่ 1
false negative (FN)
เท่ากับ miss, ความผิดพลาดชนิดที่ 2

sensitivity หรือ true positive rate (TPR)
เท่ากับ hit rate, recall
𝑇𝑃𝑅=𝑇𝑃/P=𝑇𝑃/(𝑇𝑃+𝐹𝑁)
specificity (SPC) หรือ true negative rate
𝑆𝑃𝐶=𝑇𝑁/N=𝑇𝑁/(𝑇𝑁+𝐹𝑃)
precision หรือ positive predictive value (PPV)
𝑃𝑃𝑉=𝑇𝑃/(𝑇𝑃+𝐹𝑃)
negative predictive value (NPV)
𝑁𝑃𝑉=𝑇𝑁/(𝑇𝑁+𝐹𝑁)
fall-out หรือ false positive rate (FPR)
𝐹𝑃𝑅=𝐹𝑃/N=𝐹𝑃/(𝐹𝑃+𝑇𝑁)=1𝑆𝑃𝐶
false negative rate (FNR)
𝐹𝑁𝑅=𝐹𝑁/(𝑇𝑃+𝐹𝑁)=1𝑇𝑃𝑅
false discovery rate (FDR)
𝐹𝐷𝑅=𝐹𝑃/(𝑇𝑃+𝐹𝑃)=1𝑃𝑃𝑉

accuracy (ACC)
𝐴𝐶𝐶=(𝑇𝑃+𝑇𝑁)/(𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁)
F1 score
คือ มัชฌิมฮาร์มอนิก (HM) ของ precision กับ sensitivity
𝐹1=2𝑇𝑃/(2𝑇𝑃+𝐹𝑃+𝐹𝑁)
Matthews correlation coefficient (MCC)
𝑇𝑃×𝑇𝑁𝐹𝑃×𝐹𝑁(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
Informedness
𝑇𝑃𝑅+𝑆𝑃𝐶1
Markedness
𝑃𝑃𝑉+𝑁𝑃𝑉1

Sources: Fawcett (2006) and Powers (2011).[5][6]

ลองสมมุติว่ากำลังประเมินการทดสอบชนิดใหม่ที่ตรวจคัดกรองโรคชนิดหนึ่ง แต่ละคนที่ทดสอบจริง ๆ มีหรือไม่มีโรค ผลสอบอาจเป็นบวก คือจัดบุคคลว่ามีโรค หรือเป็นลบ คือจัดบุคคลว่าไม่มีโรค แต่ผลของแต่ละคนอาจจะไม่เหมือนกับภาวะจริง ๆ ดังนั้น จะมีกรณีต่าง ๆ 4 อย่าง คือ

  • ผลบวกจริง (true positive) ผู้ป่วยตรวจพบว่ามีโรคอย่างถูกต้อง
  • ผลบวกปลอม (false positive) คนปกติตรวจพบว่ามีโรคอย่างไม่ถูกต้อง
  • ผลลบจริง (true negative) คนปกติตรวจพบว่าไม่มีโรคอย่างถูกต้อง
  • ผลลบปลอม (false negative) คนป่วยตรวจพบว่าไม่มีโรคอย่างไม่ถูกต้อง

โดยทั่วไป Positive = identified และ negative = rejected ดังนั้น

  • True positive = correctly identified
  • False positive = incorrectly identified
  • True negative = correctly rejected
  • False negative = incorrectly rejected

เราจะพิจารณากลุ่มทดสอบที่มีผลบวกมีจำนวน P และผลลบมีจำนวน N เนื่องจากโรคบางอย่าง ผล 4 อย่างสามารถทำเป็นตาราง contingency table หรือ confusion matrix ดังต่อไปนี้ แม่แบบ:DiagnosticTesting Diagram

ความไว

แม่แบบ:Unreferenced section ความไวหมายถึงสมรรถภาพของการทดสอบในการตรวจหาคนที่มีภาวะนั้น ๆ ในตัวอย่างของเรา ค่าความไวคือสัดส่วนของบุคคลที่ได้ผลบวกจากการทดสอบในบรรดาคนที่มีโรค ซึ่งเขียนเป็นสมการได้ดังต่อไปนี้

sensitivity=number of true positivesnumber of true positives+number of false negatives=number of true positivestotal number of sick individuals in population=probability of a positive test given that the patient has the disease

ผลลบจากการทดสอบที่ไวสูงจะมีประโยชน์ในการกันโรคออก (ruling out) คือเชื่อถือได้เมื่อผลเป็นลบ เพราะว่ามันไม่ค่อยวินิจฉัยผู้ที่มีโรคผิด การทดสอบที่ไว 100% จะตรวจเจอคนไข้ที่มีโรคทั้งหมดโดยให้ผลบวก ดังนั้น ผลลบจึงกันออกได้อย่างแน่นอนว่า คนไข้ไม่มีโรค แต่ผลบวกของการทดสอบที่ไวสูงไม่สามารถยืนยันว่ามีโรค (ruling in) คือ ลองสมมุติว่ามีการทดสอบ "ปลอม" ที่ออกแบบให้ออกแต่ผลบวกเท่านั้น ดังนั้น เมื่อทดสอบคนไข้ที่มีโรค คนไข้ทั้งหมดก็จะได้ผลบวก ซึ่งบ่งว่าการทดสอบมีความไว 100% แต่ว่า โดยนิยามแล้ว ค่าความไวไม่สามารถกันผลบวกปลอมได้ เพราะว่า การทดสอบปลอมก็จะออกผลบวกสำหรับคนปกติทั้งหมด ซึ่งบ่งว่าการทดสอบมีอัตราผลบวกปลอม 100% ทำให้ไม่มีประโยชน์อะไรในการตรวจจับ หรือยืนยันว่ามีโรค ความไวไม่ใช่อย่างเดียวกับความเที่ยง (precision) หรือค่าทำนายเมื่อผลเป็นบวก (positive predictive value) ซึ่งเป็นอัตราส่วนของผลบวกจริงต่อค่ารวมของผลบวกจริงกับผลบวกปลอม คือเป็นสัดส่วนของผลบวกจริงต่อประชากรที่แสดงผลบวก

การคำนวณค่าความไวไม่รวมผลการทดสอบที่คลุมเครือ ถ้าไม่สามารถทดสอบใหม่ได้ ตัวอย่างที่คลุมเครือไม่ควรจะรวมเข้าเพื่อวิเคราะห์ (โดยให้ระบุจำนวนตัวอย่างที่ยกเว้นเมื่อแสดงค่าความไว) หรือสามารถปฏิบัติเหมือนกับผลลบปลอม (ซึ่งจะเป็นการแสดงค่าต่ำสุดของความไว และดังนั้น อาจจะเป็นค่าประเมินที่น้อยเกินจริง)

ความจำเพาะ

ความจำเพาะเป็นสมรรถภาพของการทดสอบในการตรวจหาบุคคลที่ไม่มีภาวะนั้น ๆ ลองพิจารณาตัวอย่างการทดสอบคนไข้ของเรา ค่าความจำเพาะของการทดสอบก็คือสัดส่วนของบุคคลปกติที่ไม่มีโรค ผู้จะทดสอบได้ผลลบ ซึ่งสามารถเขียนเป็นสมการ

specificity=number of true negativesnumber of true negatives+number of false positives=number of true negativestotal number of well individuals in population=probability of a negative test given that the patient is well

การได้ผลบวกจากการทดสอบจำเพาะสูงมีประโยชน์ในการวินิจฉัยว่าเป็นโรค (ruling in) เพราะว่า การทดสอบนี้ไม่ค่อยให้ผลบวกในคนปกติ เมื่อผลทดสอบเป็นบวก การทดสอบที่จำเพาะ 100% แสดงว่า ทั้งหมดเป็นผู้ป่วยโดยไม่มีคนปกติ[7]

ผลลบในการทดสอบที่จำเพาะสูงจะไม่มีประโยชน์ในการกันโรคออก ลองสมมุติว่ามีการทดสอบ "ปลอม" ที่ออกแบบให้แสดงผลลบเท่านั้น ซึ่งเมื่อทดสอบคนปกติทุกคน ก็จะแสดงผลลบทุกคน และนี่ก็จะให้ค่าจำเพาะ 100% ต่อการทดสอบ แต่การทดสอบเดียวกันก็จะให้ผลลบต่อผู้ป่วยทั้งหมดเหมือนกัน ดังนั้น ก็จะมีอัตราอัตราผลลบปลอมที่ 100% ซึ่งไม่มีประโยชน์อะไรในการกันโรคออก (ruling out) ความจำเพาะโดยนิยามไม่สามารถกันผลลบปลอมได้ การทดสอบที่จำเพาะสูงจะมีอัตราความผิดพลาดชนิดที่ 1 ต่ำ

ตัวอย่างแสดงเป็นรูป

ตัวอย่างในการแพทย์

ในการวินิจฉัยทางการแพทย์ ความไวเป็นสมรรถภาพของการทดสอบในการระบุคนที่มีโรคอย่างถูกต้อง (อัตราผลบวกจริง) เทียบกับความจำเพาะที่เป็นสมรรถภาพในการระบุผู้ที่ไม่มีโรคอย่างถูกต้อง (อัตราผลลบจริง) ถ้ามีผู้ป่วย 100 คนที่ทดสอบ แต่มีเพียง 43 คนที่ได้ผลบวก การทดสอบนี้ก็จะมีความไว 43% ถ้ามีคนปกติ 100 คนที่ทดสอบ แต่มีคน 96 ที่ได้ผลลบ การทดสอบนี้ก็จะมีความจำเพาะ 96% ความไวและความจำเพาะเป็นคุณสมบัติของการทดสอบที่เป็นอิสระจากความชุกของโรค เพราะว่า ค่าของมันเฉพาะกับการทดสอบและไม่ได้ขึ้นอยู่กับความชุกของกลุ่มประชากรที่เป็นประเด็น[8] เทียบกับค่าทำนายเมื่อผลเป็นบวก (positive predictive value) และค่าทำนายเมื่อผลเป็นลบ (negative predictive value) ซึ่งเป็นค่าที่ขึ้นกับความชุกของกลุ่มประชากรที่ทดสอบ แต่ความจำเพาะและความไวไม่ใช่ ค่าเหล่านี้แสดงให้ดูเป็นกราฟในแอปเพล็ตนี้ (Bayesian clinical diagnostic model) ซึ่งแสดงค่าทำนายเมื่อผลเป็นบวกและเมื่อผลเป็นลบโดยเป็นฟังก์ชันของความชุกของโรค ความไว และความจำเพาะ

สิ่งที่อาจทำให้เข้าใจผิด

มักกล่าวกันว่า การทดสอบที่จำเพาะสูงมีประโยชน์ในการยืนยันว่ามีโรคเมื่อได้ผลบวก และการทดสอบที่ไวสูงในการกันโรคออกเมื่อได้ผลลบ[9][10] มีแม้แต่รหัสช่วยจำ คือ SPIN และ SNOUT ที่ใช้กันอย่างกว้างขวาง ซึ่งมาจากวลีว่า a highly 'SPecific' test, when Positive, rules IN disease (SP-P-IN) คือ การทดสอบที่จำเพาะสูง เมื่อได้ผลบวก จะยืนยันโรค และจากวลีว่า a highly 'SeNsitive' test, when Negative rules OUT disease (SN-N-OUT) คือ การทดสอบที่ไวสูง เมื่อได้ผลลบ จะกันโรคออก แต่กฎทั้งสองนี้อาจทำให้เข้าใจเหตุผลผิดได้ เพราะว่า กำลังการวินิจฉัยของการทดสอบอย่างใดอย่างหนึ่งจะขึ้นอยู่กับทั้งความไวและความจำเพาะ[11][12][13]

ตารางแบบเติมตัวเลข

แม่แบบ:SensSpecPPVNPV

ารประเมินความผิดพลาดของค่าความไวและความจำเพาะ

ค่าความไวและความจำเพาะเพียงอย่างเดียวอาจทำให้เข้าใจผิด คือ จะต้องคำนวณค่าแย่ที่สุด (worst-case) ของค่าทั้งสองเพื่อเลี่ยงการพึ่งผลการทดลองที่มีจำนวนน้อย ยกตัวอย่างเช่น การทดสอบหนึ่งไว 100% เมื่อเทียบกับวิธีการมาตรฐาน (gold standard) 4 ครั้ง แต่ว่าการทดสอบอีกครั้งหนึ่งแสดงผลที่ไม่เท่าเทียม คือเท่ากับแสดงความไวแค่ 80% วิธีสามัญอย่างหนึ่งก็คือมีการบ่ง binomial proportion confidence interval (คือ ช่วงความเชื่อมั่นในสัดส่วนหนึ่งของประชากรทางสถิติ) ซึ่งบ่อยครั้งคำนวณโดยใช้ Wilson score interval ดังนั้น ช่วงความเชื่อมั่น (confidence intervals) ของค่าความไวและความจำเพาะสามารถคำนวณได้ โดยให้พิสัยของค่า (คือกำหนดค่าสูงและต่ำ) ที่อยู่ในระดับความเชื่อมั่นขั้นหนึ่ง (เช่น ความเชื่อมั่นที่ 95% ว่าค่าอยู่ระหว่างค่านี้กับค่านี้)[14]

ศัพท์ในศาสตร์การค้นคืนสารสนเทศ

ในการค้นคืนสารสนเทศ (information retrieval) ค่าทำนายเมื่อผลเป็นบวกเรียกว่า precision (ความเที่ยง) และค่าความไวเรียกว่า recall แต่ไม่เหมือนกับการแลกเปลี่ยนข้อดีข้อเสียระหว่างความจำเพาะเทียบกับความไว ค่าทั้งสองนี้เป็นอิสระจากผลลบจริง (true negative) ซึ่งปกติจะเป็นข้อมูลที่ไม่รู้โดยมีจำนวนมากกว่าจำนวนเอกสารที่เกี่ยวข้องและต้องการค้นคืนมาก และข้อสมมุติในเรื่องนี้ว่า ผลลบจริงเป็นจำนวนที่ใหญ่กว่ามากจะไม่ค่อยมีในการประยุกต์ใช้ค่าสองอย่างนี้ในประเด็นอื่น ๆ[6] จึงมีการใช้ F-score เป็นค่าเดียวที่แสดงประสิทธิภาพของการทดสอบที่ได้ผลบวก โดยเป็น harmonic mean ของ precision และ recall คือ

F=2×precision×recallprecision+recall

ศัพท์ในสถิติ

ในการศึกษาโดยการตรวจสอบสมมติฐานทางสถิติ (statistical hypothesis testing) ความไวของการทดสอบจะเรียกว่า กำลังทางสถิติ (statistical power) ของการทดสอบ แต่คำว่า กำลัง (power) ในเรื่องนี้มีความหมายกว้างกว่าความไวที่ใช้ในบทความนี้ การทดสอบที่ไวจะมีความผิดพลาดชนิดที่ 2 จำนวนน้อยกว่า

ดูเพิ่ม

แม่แบบ:Portal

เชิงอรรถและอ้างอิง

แม่แบบ:รายการอ้างอิง

แหล่งข้อมูลอื่น

แม่แบบ:Medical research studies