โบรอน
แม่แบบ:กล่องข้อมูล โบรอน โบรอน (แม่แบบ:Langx) เป็นธาตุในตารางธาตุที่มีสัญลักษณ์ B และเลขอะตอม 5 เป็นธาตุที่มี 3 วาเลนซ์อิเล็กตรอน และเป็นกึ่งโลหะ
รากศัพท์
ชื่อโบรอนมีรากศัพท์จากภาษาอาหรับ بورق (buraq) หรือ ภาษาเปอร์เซีย بوره (burah) ทั้งคู่นี้มีความหมายว่าบอแรกซ์[1]
ลักษณะ
โบรอนบริสุทธิ์เป็นของแข็งที่มีจุดเดือดจุดหลอมเหลวสูง แข็งและเปราะ เป็นธาตุกึ่งโลหะที่มีคุณสมบัติอยู่ระหว่างธาตุโลหะและธาตุอโลหะ โบรอนถูกค้นพบในปีค.ศ. 1808 โดยความร่วมมือกันของ โฌแซ็ฟ หลุยส์ แก-ลูว์ซัก และ หลุยส์ ฌัก เธนาด์, และ ฮัมฟรี เดวี ค้นพบเองในปีเดียวกัน
ธาตุโบรอนมีสมบัติคล้ายกับธาตุหมู่ 14 อย่างคาร์บอนและซิลิคอน มากกว่าธาตุหมู่ 13 ที่เป็นหมู่เดียวกันอย่างอะลูมิเนียม ผลึกโบรอนไม่มีความว่องไวต่อปฏิกิริยาและทนทานต่อกรดสูง ไม่ถูกกัดกร่อนโดยกรดไฮโดรฟลูออริก โดยทั่วไปแล้วสารประกอบโบรอนมีค่าออกซิเดชัน +3 อย่างเช่น สารประกอบเฮไลด์ที่มีความสมบัติเป็นกรดลิวอิส, สารประกอบโบเรตที่พบในแร่โบเรต โบเรนที่มีพันธะพิเศษเรียก 3c–2e bond โบรอนมีไอโซโทป 13 ไอโซโทปและในธรรมชาติมี 11B 80.1% และ 10B 19.9%
โบรอนมีปริมาณในเปลือกโลกค่อนข้างต่ำ แต่มีการรวมตัวเป็นแร่ขนาดใหญ่ ง่ายต่อการขุดมาใช้จึงมีประวัติการใช้มาตั้งแต่นาน อดีตใช้เป็นสารเคลือบเครื่องปั้นดินเผา ปัจจุบันนิยมใช้ในการผลิตแก้วถึงร้อยละ 60 ในปริมาณบริโภคปี 2011 อื่น ๆ ใช้เป็นสารผสมในคอนดักเตอร์ อุปกรณ์เครื่องเสียงและยาฆ่าแมลง
โบรอนเป็นธาตุที่ต้องการสำหรับพืชเพื่อรักษาผนังเซลล์ เมื่อขาดแคลนจะส่งผลกระทบต่อการเจริญเติบโต โบรอนคาดว่าเป็นธาตุที่ต้องการสำหรับสัตว์เหมือนกันแต่ยังไม่ทราบหน้าที่อย่างชัดเจน สำหรับมนุษย์และสัตว์ โบรอนไม่เป็นพิษเหมือนเกลือแกงแต่สำหรับพืชเมื่อปลูกบนดินที่มีโบรอนสูงจะเกิดการตายเฉพาะส่วนบริเวณใบ และเป็นพิษต่อแมลง
ประวัติ
มนุษย์รู้จักสารประกอบโบรอนตั้งแต่เมื่อหลายพันปีก่อน บอแรกซ์ที่พบในทะเลทรายบริเวณทิเบตตะวันตกเรียกว่า tincal ในภาษาสันสกฤต ก่อนคริสต์ศตวรรษที่ 3 ที่จีนใช้บอแรกซ์เป็นสารเคลื่อบเครื่องปั้นดินเผา ในคริสต์ศตวรรษที่ 13 มาร์โก โปโลนำเครื่องปั้นดินเผาที่มีบอแรกซ์เคลือบอยู่กลับประเทศอิตาลี ประมาณปี ค.ศ. 1600 ใช้เป็นสารเร่งการหลอมในโลหวิทยาโดย Agricola

ปี ค.ศ. 1774 พบโบเรตในไอน้ำใต้พิภพที่ Larderello ใกล้ ฟลอเรนซ์ แคว้นตอสกานา ประเทศอิตาลี จึงมีโรงงานผลิตโบแรตและเป็นแหล่งผลิตโบแรตสำคัญ แต่ในคริสต์ศตวรรษที่ 19 พบบริเวณแร่บอแรกซ์ขนากใหญ่ที่สหรัฐอเมริกาและเป็นแหล่งผลิตบอแรกซ์แทน หลังผลิตบอแรกซ์จบแล้วที่ Larderello มีการสร้างโรงไฟฟ้าพลังงานใต้พิภพแทน แร่ที่มีโบรอนเป็นองค์ประกอบมีแร่ Sassolite พบที่ Sasso Pisano ประเทศอิตาลี Sassolite เป็นใช้เป็นแหล่งผลิตบอแรกซ์ตั้งแต่ปี ค.ศ. 1827 จนถึงปี ค.ศ. 1872 แต่หลังจากนั้นใช้ของสหรัฐอเมริกาแทนเช่นกัน[2] สารประกอบโบรอนไม่นิยมมีการใช้จนถึงคริสต์ศตวรรษที่ 18 แต่เมื่อบริษัท Pacific Coast Borax Company ของ Francis Marion Smith ผลิตสารประกอบโบรอนในราคาถูกและจำนวนมาก และเมื่อมีการผลิตแก้วในปริมาณมากแล้วบอแรกซ์ถูกบริโภคจำนวนมากในอุตสาหกรรมแก้ว[3]
รายงานวิจัยในสมัยแรกมีรายงานผลิตโบเรตจากปฏิกิริยาระหว่างบอแรกซ์และกรดซัลฟูริกในปี ค.ศ. 1702, รายงานปฏิกิริยาเปลวไฟเป็นสีเขียวในปี ค.ศ. 1741, รายงานผลิตบอแรกซ์จากปฏิกิริยาระหว่างโบเรตและโซเดียมไฮดรอกไซด์ ทีม โฌแซ็ฟ หลุยส์ แก-ลูว์ซัก และ หลุยส์ ฌัก เธนาด์ 2 คน[4]และ ฮัมฟรี เดวี[5] สามารถแยกโบรอนบริสุทธิ์ แต่ก่อนหน้านี้ไม่ยอมรับว่าเป็นธาตุบริสุทธิ์ ใน ค.ศ. 1808 ฮัมฟรี เดวี รายงานว่าเมื่อนำสารละลายโบเรตแยกด้วยไฟฟ้า เกิดตะกอนสีน้ำตาลบริเวณขั้วไฟฟ้า หลังจากนั้น ฮัมฟรี เดวี ใช้วิธีรีดิวซ์โบรอนด้วยโพแทสเซียมแทนการแยกด้วยไฟฟ้าและแยกโบรอนจำนวนพอสมควรที่จะตรวจสอบว่าเป็นธาตุ ฮัมฟรี เดวี ตั้งชื่อธาตุนี้ว่า "boracium"[5] โฌแซ็ฟ หลุยส์ แก-ลูว์ซัก และ หลุยส์ ฌัก เธนาด์ ใช้วิธีรีดิวซ์โบรอนด้วยเหล็กในอุณหภูมิสูงและพวกเขานำโบรอนออกซิไดซ์ด้วยออกซิเจน ได้โบเรตเพื่อแสดงว่าโบเรตเป็นสารประกอบของโบรอน[4] ในปีค.ศ.1824 Jöns Jacob Berzelius ได้ตรวจสอบสมบัติเป็นธาตุของโบรอน[6] หลังจากนั้นมีหลายนักเคมีพยายามแยกโบรอนบริสุทธิ์แต่ส่วนใหญ่มีความบริสุทธิ์ต่ำกว่า 85% คนที่แยกโบรอนบริสุทธิ์คือนักเคมีชาวสหรัฐอเมริกา Ezekiel Weintraub ด้วยวิธีนำโบรอนไตรคลอไรด์รีดิวซ์ด้วยไฮโดรเจนบนอาร์คไฟฟ้าในปี ค.ศ. 1909[7][8][9]
สมบัติ
สมบัติทางกายภาพและทางเคมี
โบรอนมีหลายอัญรูป สมบัติละเอียดจะแตกต่างกันในแต่ละอัญรูป แต่โดยรวมแล้วเป็นของแข็งที่แข็งและเปราะ จุดเดือดจุดหลอมเหลวสูง ตัวอย่างเช่น จุดหลอมเหลวของโบรอนอสัณฐานคือ 2,300℃[10] และ β–รอมโบฮีดรัลโบรอนคือ 2,180℃[11] จุดเดือดของ β–รอมโบฮีดรัลโบรอนคือ 3,650℃[11] โบรอนอสัณฐานจะระเหิดที่ 2,550℃[10] ความแข็งของ β–รอมโบฮีดรัลโบรอนอยู่ระดับ 9.3 บนมาตราโมส ความถ่วงจำเพาะของα-รอมโบฮีดรัลโบรอนและ β–รอมโบฮีดรัลโบรอนมีค่า 2.46 และ 2.35 ตามลำดับ[10]
โบรอนบริสุทธิ์เป็นกึงโลหะที่มีคุณสมบัติอยู่ระหว่างธาตุโลหะและธาตุอโลหะ โบรอนมีสมบัติพันธะโคเวเลนต์ที่เสถียรคล้ายกับคาร์บอนและซิลิคอนที่อยู่ในธาตุหมู่ 14 มากกว่า อะลูมิเนียมและแกลเลียมที่อยู่หมู่ 13 เดียวกันกับโบรอน เนื่องจากพลังงานไอออไนเซชันลำดับที่หนึ่งของโบรอนมีค่าสูงถึง 8.296eV จึงเป็นไอออนได้ยากและไฮบริดออร์บิทัล sp2 มีพลังงานต่ำกว่าออร์บิทัล 2s22p1[12]โบรอนบริสุทธิ์มีพันธะโคเวเลนต์ที่แข็งแรงระหว่างโบรอนจึงขาดอิเล็กตรอนอิสระเพื่อแสดงสมบัติการนำไฟฟ้า เป็นเหตุผลอธิบายสมบัติกึ่งโลหะของโบรอนที่นำไฟไฟ้าแต่นำได้น้อย และเนื่องจากเหตุผลดังกล่าวโบรอนมีสมบัติเป็นสารกึ่งตัวนำ[13]
ผลึกโบรอนไม่ว่องไวต่อปฏิกิริยา ทนต่อการต้มด้วยไฮโดรฟลูออริกและไฮโดรคลอริก ผงโบรอนสามารถถูกกัดกร่อนโดยการต้มด้วยไฮโดรเจนเปอร์ออกไซด์เข้มข้น กรดไนตริกเข้มข้น กรดซัลฟูริก หรือโครมิค[14] เลขออกซิเดชันของโบรอนขึ้นอยู่กับผลึก รัศมีผลึก ความบริสุทธิ์ และอุณหภูมิ โบรอนไม่ปฏิกิริยากับออกซิเจนในอุณหภูมิห้อง แต่ปฏิกิริยาในอุณหภูมิสูงได้ผลิตภัณฑ์คือโบรอนออกไซด์[15]
เมื่อโบรอนปฏิกิริยาฮาโลจิเนชันได้สารประกอบไตรเฮไลด์
โดยทั่วไปแล้วโบรอนไตรคลอไรด์จะผลิตจากโบรอนออกไซด์[15]
สารประกอบ

โดยปกติแล้วสารประกอบโบรอนมีเลขออกซิเดชัน +3 เช่น สารประกอบออกไซด์ สารประกอบซัลไฟด์, สารประกอบไนไตรด์,และสารประกอบเฮไลด์[15] สารประกอบไตรเฮไลด์มีโครสร้างสามเหลี่ยมแบนราบ และสารประกอบประเภทนี้มีอิเล็กตรอนบนโบรอนแค่ 6 อิเล็กตรอนจึงไม่เป็นไปตามก็ออกเตตจึงมีสมบัติเป็นกรดลิวอิสและปฏิกิริยาทันทีกับสารให้อิเล็กตรอนคู่โดดเดี่ยวอย่างเบสลิวอิส ยกตัวอย่างเช่น โบรอนไตรฟลูออไรด์ (BF3) ปฏิกิริยากับฟลูออไรด์ไอออน(F−) ได้เตตระฟลูออโรโบเรตไอออน (BF4−) โบรอนไตรฟลูออไรด์ใช้เป็นสารเร่งปฏิกิริยาในอุตสาหกรรมปิโตรเคมี สารประกอบไตรเฮไลด์สามารถปฏิกิริยากับน้ำได้กรดโบริก[12][15]
โบรอนสามารถพบเป็นสารประกอบออกไซด์ที่มีเลขออกซิเดชัน +3 ในธรรมชาติ บางครั้งเกิดพันธะกับธาตุอื่น ๆ ในแร่โบเรตกว่า 100 ชนิดโบรอนมีเลขออกซิเดชัน +3 แร่โบแรตมีส่วนคล้ายกับแร่ซิลิเกตหลายประการแต่โครงสร้างของแร่ซิลิเกตมีหน่วยย่อยเป็น SiO4 ที่มีรูปร่างทรงสี่หน้า ต่างจากโบเรตที่มี BO4 และ BO3 ที่มีรูปร่างเป็นทรงสี่หน้าและสามเหลี่ยมแบนราบตามลำดับ ยกตัวอย่าง บอแรกซ์ที่เป็นหนึ่งในแร่โบแรตนั้นมีเตตระโบเรตไอออน ในเตตระโบเรตไออนโบรอนมีรูปร่างสองชนิตคือทรงสี่หน้าและสามเหลี่ยมแบนราบ โบรอนที่มีรูปร่างทรงสี่หน้ามีประจุติดลบ ประจุลบนี้จะดุลกับไอออนบวกอื่น ๆ เช่น โซเดียมไอออน(Na+)ที่อยู่ในแร่[15]
โบเรน
โบเรนเป็นสารประกอบระหว่างโบรอนกับไฮโดรเจน สามารถเขียนสูตรโครงสร้างเป็น BxHy ในโบเรนมีพันธะสะพานไฮโดรเจนอย่าง B-H-B จึงไม่สามารถอธิบายพันธะด้วยวิธีคิดเลขออกซิเดชัน แต่เกิดเป็นพันธะพิเศษเรียก 3c–2e bond โครงสร้างโบเรนสามารถมีหน่อยย่อยเป็นทรงยี่สิบหน้าและเมื่อโบเรนมีโบรอนลดลง หากโครงสร้างโดยลบโบรอนออก โบรอนมีหลายไอโซเมอร์เช่น ไดไฮโดรเดคะโบเรนประกอบจากกลุ่มโบรอน 5 อะตอม 2 กลุ่ม และสามารถมีไอโซเมอร์ได้ 3 แบบเนื่องจากวิธีเกิดพันธะระหว่าง 2 กลุ่ม[16]
โบเรนที่เล็กที่สุดคือBH3แต่ไม่สามารถแยกออกได้ ใช้ไดโบเรน(B2H6)เป็นสารตั้งต้นในการสังเคราะห์โบเรนต่าง ๆ แทน โบเรนทีร่มีจำนวนโบรอนน้อยว่องไวต่ออากาศและสามารถเกิดเปฏิกิริยาเผาไหม้แต่ตั้งแต่โบเรนที่มีโบรอน 5 อะตอมขึ้นไปจะเสถียรต่ออากาศ มีโบเรนที่สำคัญมีเพนตะโบเรน B5H9 และเดคะโบเรน B10H14 ทั้งสองนี้สามารถสังเคราะห์จากการสลายตัวด้วยความร้อนของไดโบเรนB2H6 มีหลายโบเรนไอออนที่มีชื่อเสียงอย่างเช่น เตตระไฮโดรโบเรตไอออนและอนุพันธ์นิยมใช้เป็นเกลือรีดิวซ์ และไอออนที่มีจำนวนโบรอนมากอย่าง [B12H12]2−นิยมใช้ในการวิจัย[12]
อนุพันธ์ของโบเรนมีคาร์บาโบเรน (carbaborane) ที่มีหมู่ CH แทนที่ BH− ในโบเรนที่เป็นไอโซอิเล็กทรอนิกกัน สังเคราะห์ด้วยการปฏิกิริยาระหว่างโบเรนและอะเซทิลีน นอกจากนั้นยังสามารถเกิดอนุพันธ์เฮเทโรโบเรนกับกำมะถัน, ฟอสฟอรัส, อาร์เซนิกแทนที่โบรอนเหมือนคาร์บอนเช่นกัน คาร์บาโบเรนปฏิกิริยากับเบสแก่ได้คาร์บาโบเรนแอนไอออนเช่น B9C2H112− มีโครงสร้างคล้าย cyclopentadienyl anion([C5H5]−)[12]และเกิดสารประกอบเชิงซ้อนกับโลหะทรานซิชัน ธาตุฮาโลเจน เอมีน และหมู่แอลคิลต่าง ๆ สามารถแทนที่ไฮโดรเจนได้ผลิตภัณฑ์เป็นอนุพันธ์ของโบเรน
โบรอนไนไตรด์
โบรอนไนไตรด์มีโครงสร้างหลายรูปแบบคล้ายอัญรูปของคาร์บอนอย่าง เพชรและคาร์บอนนาโนทูป โบรอนไนไตรด์ที่มีโครงสร้างเดียวกับเพชรเรียกว่าคิวบิกโบรอนไนไตรด์หรือโบราโซน โบรอนอยู่ต่ำแหน่งเดียวกับคาร์บอนบนทรงสี่หน้าในเพชร ใน 4 B-N พันธะมี 1 พันธะเป็นพันธะโคออร์ดิเนต หมายความว่า โบรอนสร้างพันธะโคเวเลนต์กับไนโตรเจน 3 อะตอม และเกิดออร์บิทัลว่าง 1 อร์บิทัล จากนั้นอิเล็กตรอนคู่โดดเดี่ยวของไนโตรเจนทำงานเป็นเบสลิวอิส สร้างพันธะกับออร์บิทัลว่างของโบรอนได้พัทธะที่ 4 ของพันธะ B-N คิวบิกโบรอนไนไตรด์มีความแข็งใกล้กับเพชรจึงนิยมใช้เป็นสารบดวาว[17][18]
สารประกอบระว่างโลหะและโบรอน
โบรอนสามารถเกิดสารประกอบกับธาตุหลายชนิต โดยเฉพาะสารประกอบระหว่างธาตุโลหะกับโบรอนส่วนใหญ่มีสัมบัติทางโลหะจึงนิยมใช้เป็นโลหะผสมโบรอน ถึงแม้โบรอนไม่ใช้ธาตุโลหะ สารประกอบระหว่างธาตุโลหะกับโบรอนทั่วไปมีสมบัติแข็งแรง จุดหลอมเหลวสูง ไม่ว่องไวต่อปฏิกิริยา สารประกอบระหว่างธาตุโลหะกับโบรอนส่วนใหญ่สามารถสังเคราะห์ได้โดยหลอมละลายโบรอนกับโลหะด้วยกัน อย่างเหล็กโบไรด์และโครเมียมโบไรด์ใช้วิธีริดิวซ์เช่นวิธีเทอร์ไมท์ที่สามารถสังเคราะห์ได้ปริมาณมากแต่มีสิ่งเจือปนผสม สารประกอบระหว่างธาตุโลหะกับโบรอนจะไม่พบปริมาณสารสัมพันธ์ระหว่างอะตอมโบรอนและอะตอมโลหะเนื่องจากเกิดโครงสร้างที่โบรอนเข้าไปในช่องว่างของโครงสร้างโลหะ หรือโลหะเข้าไปในช่องว่างของโครงสร้างโบรอน[12] สารประกอบระหว่างธาตุโลหะกับโบรอนที่สำคัญมีเหล็กโบไรด์ ( Ferroboron ) เช่น Fe2BやFeB、Fe2B5 เหล็กโบไรด์ใช้ในการเพิ่มประสิทธิภาพในการผลิตเหล็ก, การหลอมเหล็กและการเชื่อมเหล็ก โบรอนยังสามารถเกิดสารประกอบกับโลหะหลายชนิดนอกจากสารประกอบไบนารี อย่างเช่น Nd2Fe14B เป็นสารประกอบระหว่างนีโอดิเมียม เหล็กและโบรอน ใช้เป็นแม่เหล็กนิโอดิเมียมที่มีสนามแม่เหล็กแรง
อัญรูป
โบรอนทึ 7 อัญรูปและมีโครงสร้างเป็นผลึกหรืออสันฐาน อัญรูปหลัก ๆ มี α-รอมโบฮีดรัลโบรอน β-รอมโบฮีดรัลโบรอน β-เตตร้าโกนัลโบรอน เมื่ออยู่ในสภาพแวดล้อมพิเศษเกิดอัญรูปอื่นเช่น α-เตตร้าโกนัลโบรอนและ γ-ออร์โธรอมบิกโบรอน อัญรูปแบบอสันฐานรู้ว่ามีรูปคล้ายแก้วและรูปผงละเอียด[19] อัญรูปที่มีความเสถียรมากที่สุดในสภาวะมาตรฐานคือ β-รอมโบฮีดรัลโบรอน และอัญรูปอื่นมีความเสถียรเช่นกัน มีรายงานอย่างน้อย 14 อัญรูปแต่นอกจาก 7 อัญรูปที่กล่าวข้างต้นไม่มีหลักฐานชัดเจนหรือมีหลักฐานไม่เพียงพอ คาดว่าอัญรูปเหล่านั้นไม่ได้เป็นอัญรูปเดียวแต่เป็นโครงสร้างที่เกิดจากหลายอัญรูปผสมกันหรือมีสิ่งเจือปน[20][21][22]
| เฟส | α-R | β-R | γ | β-T |
|---|---|---|---|---|
| ระบบผลึก | รอมโบฮีดรัล | รอมโบฮีดรัล | ออร์โธรอมบิก | เตตราโกนั่ล |
| จำนวนอะตอมต่อหน่วยเซลล์[22] | 12 | ~105 | 28 | 192 |
| ความหนาแน่น[23][24][25][26] | 2.46 | 2.35 | 2.52 | 2.36 |
| ความแข็ง Vickers[27][28] | 42 | 45 | 50-58 | |
| Bulk modulus[28][29] | 224 | 185 | 227 | |
| ช่องว่างพลังาน[28] | 2 | 1.6 | 2.1 | ~2.6[30] |
ไอโซโทป
โบรอนในธรรมชาติมา 2 ไอโซโทปที่เสถียรคือ 11B 80.1% และ 10B 19.9% ผลต่างระหว่างอัตราส่วนพบในธรรมชาติ 11B/10B และ อัตราส่วนวัดได้จริง 11B/10B ถูกนิยามว่า δ11B มีหน่วยเป็น ‰ ( ในพันส่วน ) มีค่ากว้างตั้งแต่ -16 ถึง +59 จากธรรมชาติ ปัจจุบันทราบไอโซโทปโบรอน 13 ไอโซโทป 7B มีเวลาครึ่งชีวิตน้อยที่สุดมีครึ่งชีวิต 3.5×10−22 วินาทีสลายโดยเกิดการปล่อยโปรตอนหรือการสลายให้อนุภาคแอลฟา การแยกไอโซโทปของโบรอนใช้วิธีควบคุมปฏิกิริยาแลกเปลี่ยนระหว่าง B(OH)3 และ [B(OH)4]- หรือไอโซโทปยังสามารถแยกกันได้ในผลึกแร่จากบริเวณระบบไฮโดรเทอร์มอลและหินแปรไฮโดรเทอร์มอล อย่างเช่น ดินเหนียวบนหินแปรไฮโดรเทอร์มอลพบไอออน[B(OH)4]- มากแสดงถึงมีการกำจัดไอออนออกจากน้ำทะเล ทำให้มีความเข้มข้นของ B(OH)3 มากกว่าเมื่อเทียบกับน้ำทะเลบริเวณเปลือกโลกภาคพื้นมหาสมุทรและเปลือกโลกภาคพื้นทวีป[31] ไอโซโทป 17B เป็นเอ็กโซติกไอโซโทปที่มีฮาโลนิวตรอน ดังนั้น มีรัศมีนิวเคลียสใหญ่กว่าคาดการณ์โดยโมเดลหยดน้ำ[32]
10B เหมาะสำหรับเป็นวัสดุดูดรังสีนิวตรอน 10B ในธรรมชาติมีเพียงประมาณร้อยละ 20 ของโบรอนทั้งหมด ดังนั้นในอุตสาหกรรมนิวเคลียร์นำโบรอนธรรมชาติแยกไอโซโทปและใช้ 10B บริสุทธิ์ที่ได้ ส่วนเกิดผลพลอยได้เป็น 11B บริสุทธิ์ที่มีคุณค่าต่ำ
อุตสาหกรรมการผลิต
ในการผลิตสารประกอบโบรอนจะไม่ผ่านโบรอนบริสุทธิ์เนื่องจากใช้โบเรตที่หาได้ง่ายกว่าแทน
วิธีสังเคราะห์ธาตุโบรอนในอดีด ใช้วิธีนำโบเรตรีดิวซ์ด้วยโลหะแมกนีเซียมและอะลูมิเนียม แต่วิธีนี้ไม่สามารถเก็บโบรอนบริสุทธิ์มีสารประกอบโลหะโบรอนผสมอยู่ โบรอนบริสุทธ์นั้นสามารถสังเคราะห์ได้โดยวิธีใช้โบรอนเฮไลด์ที่ระเหิยได้ง่ายรีดิวซ์ด้วยแก๊สไฮโดรเจนในอุณหภูมิสูง โบรอนความบริสุทธิ์สูงที่ใช้ในอุตสาหกรรมสารกึงตัวนำสังเคราะห์จากการสลายตัวของไดโบเรนในอุณหภูมิสูง จากนั้นนำไปบริสุทธิ์ด้วยวิธี Zone melting หรือ Czochralski method[33]
10B ที่เป็นไอโซโทปของโบรอนมีความสามารถในการดูดนิวตรอนแต่มีอัตราส่วนโบรอนในธรรมชาติแค่ประมานร้อยละ 20 ของโบรอนทั้งหมดจึงต้องแยกไอโซโทปให้ 10B เข้มข้นมากขึ้น มีวิธีต่างๆเช่น วิธีกลั่นและวิธีแลกเปลี่ยน ในวิธีกลั่นใช้กลั่นอุณหภูมิต่ำโดยใช้โบรอนเฮไลด์ที่มีจุดเดือดต่ำ ในวิธีแลกเปลี่ยนใช้การแลกเปลี่ยนระหว่างของเหลวและแก๊สของออร์เกโนโบโรฟลูออไรด์ และมีการคิดค้นวิธี 2 วิธีนี้รวมกันเป็นวิธีกลั่นแลกเปลี่ยน ปัจจุบันการผลิตโบรอนเข้มข้นนั้นส่วนใหญ่ใช้วิธีนี้
แนวโน้มการตลาด
ค.ศ.2014มีปริมาณการผลิตแร่ทั่วโลก 3.72ล้านตันและ1.77ล้านตันผลิตที่ประเทศตุรกี[34] ปีค.ศ.2008 ปริมาณการผลิตของโบเรตทั่วโลกต่ำกว่า 2.00 ล้านตันต่อปี แต่ปีค.ศ.2012 เพิ่มขึ้นถึง 2.20 ล้านตันต่อปี[35] ปีค.ศ.2015 กรมสำรวจธรณีของU.S. รายงาน Mineral Commodity Summaries คาดว่าปริมาณอุปสงค์ของโบเรตจะเพิ่มขึ้นอย่างต่อเนื่องเนื่องจากการเพิ่มขึ้นของอุปสงค์ในเอเชียและอเมริกาใต้ และในยุโรป เกณฑืการก่อสร้างเข้มงวดขึ้นเพื่อประหยัดพลังงานและแก้ไขปํญหาโลกร้อน จึงอุปสงค์ของโบรอนเพื่อผลิตกระจกกันร้อนจะเพิ่มขึ้น อุปสงค์เพิ่มขึ้นดังกล่าวนี้ทำให้การผลิตโบเรตทั้วโลกเพิ่มขึ้นตามด้วย[34]
แร่ธาตุหลักๆที่นิยมใช้ในอุตสาหกรรมคือ แร่ Colemanite, แร่ Ulexite, แร่ Kernite, และบอแรกซ์ 4แร่นี้เป็นสารตั้งต้นในการผลิตโบรอนถึงร้อยละ 90 ของทั้งหมด แร่ธาตุเหล่านี้แยกหน้าที่การผลิตโดยปริมาณโซเดียมในแร่ อย่างเช่น แร่ Ulexite, บอแรกซ์ เป็นสารตั้งต้นของโบเรต, โซเดียมเตตระโบเรตตามลำดับ[34] หนึ่งในผลิตภัณฑ์จากโบรอนมีแก้ว โบรอนที่นำไปในต้องมีปริมาณโซเดียมต่ำจึงนิยมใช้แร่ Colemanite ที่เป็นเกลือแคลเซียม อีก 3 แร่เป็นเกลือโซเดียม แต่แร่ Colemanite มีสารเจือปนเป็น อาร์เซนิก ปริมาณมากจึงปัจจุบันมีปัญหากำจัดเนื่องจากเกณฑ์เข้มงวดขึ้น ยกตัวอย่างเช่น บริเวณเมือง Magdalena รัฐนิวเม็กซิโก สหรัฐอเมริกามีแร่ Colemanite คุณภาพสูงแต่ด้วยปัญหาอาร์เซนิกจึงมีการเลื่อนก่อสร้างเหมืองแร่หลายครั้ง ปัญหาอาร์เซนิกนี้เป็นหนึ่งในสาเหตูทำให้อุปทานการผลิตลดลง[35]
ผู้ผลิตรายใหญ่ของโบรอนมี 2 บริษัทคือ บริษัท Rio Tinto Group ในสหรัฐอเมริกา และ รัฐวิสาหกิจ Eti Mine Works ของตุรกี Rio Tinto ผลิตบอแรกซ์และแร่ Kerniteจากเหมืองที่รัฐแคลิฟอร์เนีย ในปีค.ศ.2012 ผลิตโบรอนร้อยละ 25 ของทั่วโลกจากเหมืองนี้ Eti มีสิทธิ์ขุดแร่โบรอนทั้วประเทศตุรกีและปีค.ศ.2012 ผลิตโบรอนประมาณร้อยละ 50 ของทั่วโลก[35] ในประเทศจีนคาดว่ามีแร่โบรอนอยู่ 32.00ล้านตัน[34] แต่แร่ที่พบในอเมริกาและตุรกีมี B2O3 อยู่ร้อยละ 25-30 ส่วนแร่ที่พบในประเทศจีน้ป็นแร่ที่ด้อยคุณภาพ มี B2O3 อยู่ร้อยละ 8.4 [36]ประเทศจีนจึงเพิ่มปริมาณโซเดียมเตตระโบเรตนำเข้า100เท่าในระหว่างปี 2000 ถึง 2005 เพื่อตอบสนองความต้องการโบเรตที่มีคุณภาพสูง ในช่วงเวลาเดียวกันปริมาณโบเรตนำเข้าเพิ่มขึ้นร้อยละ 28 [37]ต่อปี Mineral Commodity Summaries (2015) ที่กรมสำรวจธรณีของU.S. รายงาน คาดว่า ประเทศจีนเพิ่มปริมาณนำเข้าอย่างต่อเนื่องหลังปี 2015[34]
การนำไปใช้ประโยชน์
ไม่ค่อยนิยมใช้ธาตุโบรอนอย่างเดียวแต่นิยมใช้เป็นรูปสารประกอบและโลหะผสมต่าง ๆ
กรณีใช้ในชีวิตประจำวันนิยมใช้ในรูป โบเรตและบอแรกซ์ บอแรกซ์ใช้เป็นสารตั้งต้นในการผลิตแก้ว วัตถุกันเสีย ตัวรีดิวซ์ของโลหะ สารการเชื่อม สารบดวาว และสารควบคุมไฟต่าง ๆ ในการโรงเรียนบางครังมีการทดลองสร้างสไลม์ด้วยบอแรกซ์และผงซักฟอก เกลือโบเรตและเกลือเปอร์โบเรตใช้เป็นสารล้างตา ยาบริเวณช่องปาก สารกำจัดแมลงสาบต่าง ๆ [38]
แก้วและเซรามิก
แก้วเป็นผลิตภัณฑ์หลักของโบรอน ร้อยละ 60 ของปริมาณบริโภคในปี 2011 ใช้เพื่อการผลิตแก้วรวมเส้นใยแก้ว แก้วโบโรซิลิเกตทั่วไปมีส่วนผสมของโบรอนออกไซด์อยู่ร้อยละ 5–30 มีสัมประสิทธิ์การขยายตัวจากความร้อนต่ำจึงทนทานต่อความร้อน อีกทั้งเมื่อผสมโบรอนในแก้วจะเพิ่มสภาพคล่องของเหลวดังนั้นพิ่มประสิทธิภาพในการผลิตแก้ว เครื่องหมายการค้าหลักของแก้วโบโรซิลิเกตมี Pyrex และ Duran จากความสมารถทนทานต่อความร้อนนิยมใช้เป็นอุปกรณ์การทดลอง อุปกรณ์ทำอาหาร จานทนความร้อน[39]
เส้นใยโบรอนมีน้ำหนักเบาและแข็งแรงจึงใช้เป็นสารเพิ่มความแข็งแรงของวัสดุผสมอย่างพลาสติกผสมเส้นใย นิยมใช้เป็นโครงสร้างในด้านการบินและอวกาศ ในชีวิตประจำวันใช้ในด้านกีฬาอย่างไม้กอล์ฟ เบ็ดตกปลา ยังใช้เป็นวัสดุฉนวนและวัสดุทนไฟ ร้อยละ 45 ของปริมาณบริโภคโบรอนใช้เพื่อผลิตเส้นใยแก้ว เส้นใยแก้วนี้ผลิตโดยนำโบรอนทับซ้อนบนเส้นใยทังสเตนด้วยวิธี chemical vapor deposition[40]
เครื่องเสียง
มีความหนาแน่นต่ำ ค่ามอดูลัสของยังสูง และความเร็วเสียงเร็วถึง 16,200 m/s ซึ่งเป็น 2.6 เท่าของอะลูมิเนียมจึงเหมาะสำหรับวัสดุเครื่องเสียงมากกว่าเบริลเลียมแต่มีจุดเดือดสูงและมีความยืดหยุนต่ำมากจึงเป็นวัสดุที่แปรยาก เริ่มมีการใช้หลังทศวรรษที่ 1980
- เข็มเครื่องเล่นจานเสียงของ Denon, Audio-Technica
- Diatone ใช้โบรอนคาร์ไบด์เป็นแผ่นสั่นในลำโพงเสียงสูง-กลาง
สารกึ่งตัวนำ
โบรอนใช้เป็นสารเร่งสารกึ่งตัวนำอย่างซิลิคอน เจอร์เมเนียม ซิลิคอนคาร์ไบด์ โบรอนมีวาเลนซ์อิเล็กตรอนอยู่ 3 จึงเป็นโฮลในการเคลื่อนย้ายอิเล็กตรอนจากธาตุโฮสท์ที่มี 4 อิเล็กตรอนอย่างซิลิคอนดังนั้นสร้างสารกึ่งตัวนำประเภทพี วิธีเร่งด้วยโบรอน เดิมใช้กระจายอะตอมในอุณหภูมิสูง วิธีนี้สามารถใช้สารตั้งต้นเป็นโบรอนออกไซด์ที่เป็นของแข็ง โบรอนไตรโบรไมด์ที่เป็นของเหลว,และโบรอนไตรฟลูออไรด์หรือไดโบเรนที่เป็นแก๊สได้ แต่หลังทศวรรษที่1970นิยมใช้วิธีฉีดไอออนที่ใช้โบรอนไตรฟลูออไรด์[41] โบรอนไตรคลอไรด์เป็นสารประกอบที่สำคัญในการผลิตการกึ่งตัวนำแต่ไม่ได้ใช้เป็นสารเร่ง แต่ใช้ในการสลักด้วยพลาสมาของโลหะและโลหะออกไซด์ [42]
แม่เหล็ก
โบรอนเป็นหนึ่งในธาตุที่ประกอบแม่เหล็กนิโอดิเมียมซึ่งเป็นแม่เหล็กถาวรที่แรงที่สุด มีโบรอนอยู่ประมาณร้อยละ 1 ในแม่เหล็กนิโอดิเมียม แม่เหล็กนิโอดิเมียมนิยมใช้ในอุปกรณ์อิเล็กทรอนิกส์ ระบบกราฟิกส์ในการแพทย์เช่นการสร้างภาพด้วยเรโซแนนซ์แม่เหล็ก มอเตอร์และตัวกระตุ้นให้ทำงานขนาดเล็กเช่น ฮาร์ดดิสก์ เครื่องเล่นซีดี เครื่องเล่นดีวีดีใช้แม่เหล็กนิโอดิเมียมเพื่อให้ระบบอ่านข้อมูลเล็กลง และใช้แม่เหล็กนิโอดิเมียมในลำโพงให้ขนาดเล็กลงกับโทรศัพท์มือถือ[43]
พลังงานนิวเคลียร์
ในไอโซโทปของโบรอน 10B มีพื้นที่ดูดกลืนนิวตรอนขนาดใหญ่ ใช้สมบัตินี้เป็นแท่งควบคุมในเตาปฏิกรณ์เพื่อดูดนิวตรอน[44] โบเรตที่เป็นสารประกอบใช้ผสมลงในน้ำหล่อเย็นปฐมภูมิของเตาปฏิกรณ์แบบเพิ่มความดันเพื่อควบคุมปฏิกิริยา ใช้โลหะผสมโบรอนในภาชนะเก็บสารกัมมันตรังสี[45]
สิ่งมีชีวิต
เป็นหนึ่งในธาตุต้องการของพืชและร้อยละ 98 อยู่ในผนังเซลล์จึงคาดว่าเกี่ยวข้องกับการสังเคราะห์ผนังเซลล์ การรักษาผนังเซลล์ การส่งออกน้ำตาลผ่านเยื่อหุ้มเซลล์ การสังเคราะห์กรดนิวคลีอิก เป็นโคเอนไซม์ แต่ยังไม่ชัดเจน สารที่นำพาโบรอนถูกระบุครั้งแรกในปี 2002
ส่วนโบรอนเข้มข้นสูงจะยับยั้งการเจริญของพืช[46]จึงเนื้อดินที่มีโบรอนสูงอย่างออสเตรเลียตอนใต้ยากต่อทำการเกษตร กำลังวิจัยการตัดต่อพันธุกรรมเพื่อทนต่อโบรอน[47]
หน้าที่ทางชีววิทยา
โบรอนเป็นแร่ธาตุที่สังคัญต่อผนังเซลล์ ถ้าเนื้อดินขาดโบรอนจะก่อภาวะเลี้ยงไม่โตทั่วพืช แต่ความเข้นข้นโบรอนในเนื้อดินเกิน 1 ppm ก็เกิดอาการตายเฉพาะส่วนของใบและปลายยิ่งพืชที่อ่อนไหวต่อโบรอนจะเกิดอาการเมื่อเกิน 0.8 ppm ถ้าเกิน 1.8 ppm จะเกิดอาการทุกพืชรวมพืชทนโบรอนและเมื่อเกิน 2.0 ppm เกือบจะไม่มีพืชไหนเจริญได้อย่างปกติและบางส่วนไม่สามารถมีชีวิตได้ เมื่อโบรอนในเนื้อเยื่อเกิน 200 ppm จะเริ่มมีอาการดังกล่าว[48][49]
โบรอนคาดว่าเป็นธาตุที่จำเป็นในสัตว์เลี้ยงลูกด้วยนมแต่ไม่ทราบหน้าที่ของโบรอนอย่างชัดเจน ยกตัวอย่างเช่นหนูที่ก่อให้เกิดโรคขาดโบรอนโดยการให้อาหารสกัดโบรอนออกและกรองฝุ่นในอากาศออกมีผลกระทบต่อขนตัวโบรอนจึงเป็นธาตุจำเป็นต่อรักษาร่างการของหนูและปริมาณต้องการคาดว่าน้อยมาก[50]
หลังปี ค.ศ. 1989 มีการโต้เถียงกันว่าโบรอนเป็นแร่ธาตุที่มีหน้าที่ทางชีววิทยาในสัตว์รวมมนุษย์ กระทรวงการเกษตรของสหรัฐอเมริกาทดลงให้โบรอน 3 mg ต่อวันกับผู้หญิงวัยทอง ผลที่ออกมาคือลดการถ่ายเทแคลเซียมร้อยละ 44 กระตุ้นเอสโตรเจนและวิตามิน D และมีโอกาสสามารถควบคุมโรคกระดูกพรุนแต่ไม่สามารถสรุปได้ว่าผลกระทบดังกล่าวเป็นเพราะหน้าที่ทางแร่ธาตุ หรือหน้าที่ทางยา สถาบันสุขภาพแห่งชาติ สหรัฐอเมริกากล่าวว่า "มนุษย์ปกติควรรับโบรอนระหว่าง 2.1 ถึง 4.3 mg ต่อวัน"[51]
ปัญหาสุขภาพและความเป็นพิษ
ธาตุโบรอน โบรอนออกไซด์ โบเรต เกลือโบเรตและออร์เกโนโบรอนส่วนใหญ่ ไม่เป็นพิษฉับพลันต่อมนุษย์เหมือนเกลือแกง LD50 ต่อสัตว์มีค่า ประมาณ 6 กรัมต่อน้ำหนัก 1 กิโลกรัมและสารที่มี LD50 สูงกว่า 2 กรัมต่อน้ำหนัก 1 กิโลกรัมเป็นไม่เป็นพิษ ยังไม่ทราบปริมาณต่ำที่สุดถึงแก่กรรม มีรายงานว่ารับโบรอน 4 กรัมต่อวันคาดว่าเกินปริมาณนั้นจะเป็นพิษต่อร่างกาย ถ้ารับ 0.5 กรัมต่อวันติดต่อกัน 50 วัน เกิดอาการท้องผูกและปัญหาทางระบบย่อยอาหาร [52]ในการบำบัดด้วยการจับยึดนิวตรอนจะได้รับโบเรต 20 กรัมโดยไม่เกิดอาการอื่น ๆ สัตว์ประเภทปลาสามารถดำรงชีวิตในสาละลายโบเรตอิ่มตัว 30 นาทีและสามารถมีชีวิตได้นานกว่าเมื่ออยู่ในสารละลายโซเดียมโบเรต [53]โบเรตมีความเป็นพิษต่อแมลงสูงกว่าสัตว์จึงนิยมใช้เป็นยาฆ่าแมลง[54]
โบรอนไฮไดรด์อย่างโบเรนและแก๊สที่คล้ายกันมีความเป็นพิษ โบรอนนั้นไม่เป็นพิษเหมือนโบรอนและสารประกอบอื่น ๆ แต่เกิดจากโครงสร้างทางเคมี[55]
โบเรนเป็นสารไวไฟและเป็นพิษจึงต้องระมัดระวังในการใช้ โซเดียมโบรอนไฮไดรด์เป็นสารริดิวซ์ที่แรง สามารถปฏิกิริยากับน้ำ กรด สารออกซิไดซ์อย่างรุนแรงและเสี่ยงต่อไฟไหม้และระเบิด โบรอนเฮไรด์มีฤทธิ์กัดกร่อน[56]
รายการอ้างอิง
แม่แบบ:ตารางธาตุย่อ แม่แบบ:โครงเคมี
- ↑ แม่แบบ:Cite book
- ↑ แม่แบบ:Cite book
- ↑ แม่แบบ:Cite book
- ↑ 4.0 4.1 Gay Lussac, J.L. & Thenard, L.J. (1808). "Sur la décomposition et la recomposition de l'acide boracique". Annales de chimie. 68: 169–174.
- ↑ 5.0 5.1 แม่แบบ:Cite journal
- ↑ Berzelius produced boron by reducing a borofluoride salt; specifically, by heating potassium borofluoride with potassium metal. See: Berzelius, J. (1824) "Undersökning af flusspatssyran och dess märkvärdigaste föreningar" (Part 2) (Investigation of hydrofluoric acid and of its most noteworthy compounds), Kongliga Vetenskaps-Academiens Handlingar(Proceedings of the Royal Science Academy), vol. 12, pp. 46–98; see especially pp. 88ff. Reprinted in German as: Berzelius, J. J. (1824) "Untersuchungen über die Flußspathsäure und deren merkwürdigste Verbindungen", Poggendorff's Annalen der Physik und Chemie, vol. 78, pages 113–150.
- ↑ แม่แบบ:Cite journal
- ↑ Borchert, W.; Dietz, W.; Koelker, H. (1970). "Crystal Growth of Beta–Rhombohedrical Boron". Zeitschrift für Angewandte Physik. 29: 277. OSTI 4098583.
- ↑ Weintraub, Ezekiel (1910). "Preparation and properties of pure boron". Transactions of the American Electrochemical Society. 16: 165–184.
- ↑ 10.0 10.1 10.2 “SYNTHESIS AND CHARACTERIZATION OF MgB2 SUPERCONDUCTING WIRES แม่แบบ:Webarchive”. p. 3 (2008). สืบค้นเมื่อ 08 เมษายน ค.ศ.2021
- ↑ 11.0 11.1 “Boron, B แม่แบบ:Webarchive”. Testbourne Ltd.. สืบค้นเมื่อ 08 เมษายน ค.ศ.2021
- ↑ 12.0 12.1 12.2 12.3 12.4 แม่แบบ:Cite book
- ↑ แม่แบบ:Cite book
- ↑ แม่แบบ:Cite journal
- ↑ 15.0 15.1 15.2 15.3 15.4 แม่แบบ:Cite book
- ↑ แม่แบบ:Cite book
- ↑ Engler, M. (2007). “Hexagonal Boron Nitride (hBN) - Applications from Metallurgy to Cosmetics แม่แบบ:Webarchive”. Cfi/Ber. DKG 84: D25. ISSN 0173-9913.
- ↑ แม่แบบ:Citation
- ↑ แม่แบบ:Cite book
- ↑ แม่แบบ:Cite book
- ↑ แม่แบบ:Cite book
- ↑ 22.0 22.1 แม่แบบ:Cite journal
- ↑ แม่แบบ:Cite journal
- ↑ แม่แบบ:Cite journal
- ↑ แม่แบบ:Cite journal
- ↑ แม่แบบ:Cite journal
- ↑ แม่แบบ:Cite journal
- ↑ 28.0 28.1 28.2 แม่แบบ:Cite journal
- ↑ แม่แบบ:Cite journal
- ↑ แม่แบบ:Cite book
- ↑ แม่แบบ:Cite journal
- ↑ แม่แบบ:Cite journalแม่แบบ:ลิงก์เสีย
- ↑ แม่แบบ:Cite book
- ↑ 34.0 34.1 34.2 34.3 34.4 “Mineral Commodity Summaries 2015 Boron แม่แบบ:Webarchive”. กรมสำรวจธรณีสหรัฐอเมริกา. สืบค้นเมื่อ 09 เมษายน ค.ศ.2021
- ↑ 35.0 35.1 35.2 “INDUSTRY REPORT //Borates แม่แบบ:Webarchive”. STORMCROW CAPITAL LTD.. สืบค้นเมื่อ 09 เมษายน ค.ศ.2021
- ↑ “Minerals Yearbook 2012 Boron แม่แบบ:Webarchive”. アメリカ地質調査所. p. 4. สืบค้นเมื่อ 09 เมษายน ค.ศ.2021
- ↑ แม่แบบ:Cite book
- ↑ แม่แบบ:Cite book
- ↑ แม่แบบ:Cite book
- ↑ แม่แบบ:Cite journalแม่แบบ:ลิงก์เสีย
- ↑ แม่แบบ:Cite book
- ↑ แม่แบบ:Cite book
- ↑ แม่แบบ:Cite book
- ↑ แม่แบบ:Cite book
- ↑ แม่แบบ:Cite journal
- ↑ แม่แบบ:Cite journal
- ↑ แม่แบบ:Cite journal
- ↑ แม่แบบ:Cite journalแม่แบบ:ลิงก์เสีย
- ↑ "Functions of Boron in Plant Nutrition" (PDF). U.S. Borax Inc. Archived from the original (PDF) สืบค้นเมื่อ 09 เมษายน ค.ศ. 2021
- ↑ แม่แบบ:Cite journal
- ↑ แม่แบบ:Cite book
- ↑ แม่แบบ:Cite journal
- ↑ แม่แบบ:Cite book
- ↑ แม่แบบ:Cite journal
- ↑ แม่แบบ:Cite book
- ↑ "Environmental Health Criteria 204: Boron". the IPCS. 1998. สืบค้นเมื่อ 09 เมษายน ค.ศ. 2021