ภาวะคู่กันปวงกาเร

จาก testwiki
รุ่นแก้ไขเมื่อ 16:49, 9 มกราคม 2568 โดย imported>อมฤตาลัย (ภาวะคู่กันปวงกาเรในรูปแบบปัจจุบัน)
(ต่าง) ←รุ่นแก้ไขก่อนหน้า | รุ่นแก้ไขล่าสุด (ต่าง) | รุ่นแก้ไขถัดไป→ (ต่าง)
ไปยังการนำทาง ไปยังการค้นหา

แม่แบบ:Short description

ในคณิตศาสตร์ ภาวะคู่กันปวงกาเร (แม่แบบ:Langx) เป็นทฤษฎีบทพื้นฐานที่เกี่ยวข้องกับโครงสร้างของกรุปฮอมอโลยีและกรุปคอฮอมอโลยีของแมนิโฟลด์ ทฤษฎีบทนี้กล่าวว่าถ้า M เป็นแมนิโฟลด์มิติ n ที่เป็นแมนิโฟลด์ปิด (เป็นแมนิโฟลด์กระชับและไม่มีขอบ) และกำหนดทิศทางได้ แล้วกรุปคอฮอมอโลยีตัวที่ k ของ M จะสมสัณฐานกับกรุปฮอมอโลยีตัวที่ nk สำหรับทุกจำนวนเต็ม k หรือเขียนได้ว่า

Hk(M)Hnk(M)

ภาวะคู่กันปวงกาเรเป็นจริงสำหรับทุกริงสัมประสิทธิ์ ตราบเท่าที่เลือกใช้การกำหนดทิศทางบนแมนิโฟลด์ที่สอดคล้องกับริงนั้น และเนื่องจากทุกแมนิโฟลด์มีการกำหนดทิศทางเพียงหนึ่งเดียวมอดุโล 2 แล้วจะได้ว่าภาวะคู่กันปวงการเรเป็นจริงมอดุโลสองโดยไม่ต้องกำหนดเงื่อนไขเพิ่มเติม

ประวัติ

รูปแบบหนึ่งของภาวะคู่กันปวงกาเรถูกกล่าวขึ้นเป็นครั้งแรกโดย อ็องรี ปวงกาเร ในปีค.ศ. 1893 โดยไม่ได้ให้บทพิสูจน์ ปวงกาเรตั้งทฤษฎีบทนี้ในเทอมของจำนวนเบ็ตตีว่าจำนวนเบ็ตตีตัวที่ k และ nk ของแมนิโฟลด์ปิด (แมนิโฟลด์กระชับและไม่มีขอบ) และกำหนดทิศทางได้มิติ n จะเท่ากันเสมอ แนวคิดเรื่องคอฮอมอโลยีต้องรอไปอีก 40 ปีจากขณะนั้นถึงจะชัดเจนสมบูรณ์ ในปีค.ศ. 1895 ในรายงานวิจัย Analysis Situs ปวงกาเรได้พยายามพิสูจน์ทฤษฎีบทนี้ผ่านทฤษฎีการตัดขวางเชิงทอพอโลยี (topological intersection theory) ซึ่งปวงกาเรเป็นผู้ประดิษฐ์ขึ้นมา แต่คำวิจารณ์จาก Poul Heegaard ชี้ให้ปวงกาเรเห็นว่าบทพิสูจน์ของเขาผิดพลาด ในส่วนเพิ่มเติมของรายงาน Analysis Situs ที่ตีพิมพ์ภายหลัง ปวงกาเรให้บทพิสูจน์ใหม่ผ่าน dual triangulations

ภาวะคู่กันปวงกาเรปรากฎในรูปแบบปัจจุบันภายหลังแนวคิดเรื่องคอฮอมอโลยีปรากฎขึ้นในช่วงคริสต์ศตวรรษที่ 1930 เมื่อ เอดูอาร์ด เช็ค และ แฮสเลอร์ วิทนีร์ นิยามผลคูณถ้วย (cup product) และผลคูณหมวก (cap product) จากนั้นใช้แนวคิดทั้งสองเพื่อเขียนภาวะคู่กันปวงกาเรในรูปแบบใหม่

ภาวะคู่กันปวงกาเรในรูปแบบปัจจุบัน

ภาวะคู่กันปวงกาเรในรูปแบบปัจจุบันนิยมกล่าวผ่านฮอมอโลยีและคอฮอมอโลยี แม่แบบ:ทฤษฎีบทคณิตศาสตร์

เพื่อนิยามฟังก์ชันสมสัณฐานดังกล่าว เราเลือกชั้นมูลฐาน (fundamental class) [M] ของ M ซึ่งนิยามถ้า M กำหนดทิศทางได้ จะได้ว่าฟังก์ชันสมสัณฐานเป็นการส่งสมาชิก αHk(M) ไปยังผลคูณหมวก [M]α[1]

กรุปฮอมอโลยีและกรุปคอฮอมอโลยีนิยามให้เป็นศูนย์สำหรับดีกรีเป็นจำนวนเต็มลบ ดังนั้นภาวะคู่กันของปวงกาเรจึงบ่งว่ากรุปฮอมอโลยีและกรุปคอฮอมอโลยีของแมนิโฟลด์มิติ n ที่เป็นแมนิโฟลด์ปิดและกำหนดทิศทางได้จะเป็นศูนย์สำหรับทุกดีกรีที่สูงกว่า n

ในรูปแบบข้างต้นกรุปฮอมอโลยีและกรุปคอฮอมอโลยีมีค่าเป็นจำนวนเต็ม แต่ภาวะสมสัณฐาณนี้เป็นจริงไม่ว่าใช้ริงสัมประสิทธิ์ใด ๆ ในกรณีที่แมนิโฟลด์กำหนดทิศทางได้ไม่กระชับ จะต้องเปลี่ยนฮอมอโลยีเป็น Borel–Moore homology

Hi(X)HniBM(X)

หรือเปลี่ยนคอฮอมอโลยีเป็นคอฮอมอโลยีมีส่วนค้ำจุนกระชับ (cohomology with compact support)

Hci(X)Hni(X)

บทประยุกต์กับแคแรกเทอริสติกออยเลอร์

ผลที่ตามมาโดยทันทีจากภาวะคู่กันปวงกาเรคือทุกแมนิโฟลด์ปิดและกำหนดทิศทางได้ M ที่มีมิติเป็นจำนวนเต็มคี่ จะมีแคแรกเทอริสติกออยเลอร์เท่ากับศูนย์ และจะได้ตามมาว่าทุกแมนิโฟลด์มีขอบเขตจะมีแคแรกเทอริสติกออยเลอร์เป็นเลขคู่

การวางนัยทั่วไป

ภาวะคู่กันปวงกาเร-เล็ฟเชตซ์ (Poincaré–Lefschetz duality theorem) เป็นการวางนัยทั่วไปของภาวะคู่กันปวงกาเรสำหรับแมนิโฟลด์ที่มีขอบเขต ในกรณีที่แมนิโฟลด์กำหนดทิศทางไม่ได้ เราสามารถให้ข้อมูลเกี่ยวกับภาวะคู่กันได้โดยพิจารณาชีพของการกำหนดทิศทางเฉพาะที่ เรียกว่า ภาวะคู่กันปวงกาเรทวิสต์ (twist Poincare duality)

รายการอ้างอิง

อ่านเพิ่ม