การเรืองแสงของบรรยากาศ


การเรืองแสงของบรรยากาศ[2] หรือ แสงเรืองบนท้องฟ้า (แม่แบบ:Langx) เป็นปรากฏการณ์การเปล่งแสงจาง ๆ จากชั้นบรรยากาศของดาวเคราะห์เหมือนรุ้งกินน้ำขนาดยักษ์จำนวนมากซ้อนทับกัน ในกรณีของโลกโดยปกติแล้วชั้นบรรยากาศของโลกมีการเรืองแสงอยู่ตลอดเวลา แต่สังเกตเห็นได้ยากในเวลากลางวัน ปรากฏการณ์ทางแสงนี้ทำให้ท้องฟ้ายามค่ำคืนไม่เคยมืดสนิท แสงเรืองบนท้องฟ้านี้เห็นได้ชัดกว่าในเวลากลางคืนโดยเฉพาะเมื่อเกิดการรบกวนของชั้นบรรยากาศ เช่น พายุที่กำลังเคลื่อนตัวใกล้เข้ามา การกระเพื่อมของชั้นบรรยากาศโลกทำให้เกิดจากการสั่นในอากาศในลักษณะของคลื่น คล้ายกับเมื่อเราโยนหินลงในน้ำนิ่งและเกิดเป็นคลื่นกระจายออกไปโดยรอบ และทำให้เห็นแสงเรืองบนท้องฟ้าได้ชัดเจนขึ้นเป็นริ้ว ๆ[3]
ปรากฏการณ์นี้เกิดขึ้นจากแก๊สที่มีแสงสว่างในตัวเอง และไม่มีความสัมพันธ์กับสนามแม่เหล็กของโลกและจุดมืดดวงอาทิตย์ รัศมีสีแดงที่มองเห็นเกิดขึ้นจากโมเลกุลไฮดรอกซิลในชั้นบรรยากาศ ที่อยู่สูงประมาณ 87 กิโลเมตร และถูกกระตุ้นด้วยแสงอัลตราไวโอเลตจากดวงอาทิตย์ ในขณะที่แสงสีส้มและสีเขียวนั้นเกิดจากโซเดียมและอะตอมของออกซิเจนที่อยู่สูงขึ้นไปอีกเล็กน้อย[3]
ประวัติ

ปรากฏการณ์การเรืองแสงของบรรยากาศได้รับการระบุครั้งแรกในปี ค.ศ. 1868 โดยอันเดิช อ็องสเตริม (Anders Ångström) นักฟิสิกส์ชาวสวีเดน ตั้งแต่นั้นมามีการศึกษาในห้องปฏิบัติการและสังเกตปฏิกิริยาเคมีต่าง ๆ จากการปล่อยพลังงานแม่เหล็กไฟฟ้าซึ่งสันนิษฐานว่าเป็นส่วนหนึ่งของกระบวนการ นักวิทยาศาสตร์ได้ระบุกระบวนการบางอย่างที่อาจปรากฏในชั้นบรรยากาศของโลก และนักดาราศาสตร์ได้ตรวจสอบแล้วว่ามีการปลดปล่อยดังกล่าว ไซมอน นิวคอมบ์ (Simon Newcomb) เป็นคนแรกที่สังเกตการเรืองแสงในอากาศ ในปี ค.ศ. 1901[4]
ลักษณะ

การเรืองแสงของบรรยากาศเกิดจากกระบวนการต่าง ๆ ในชั้นบรรยากาศชั้นบนของโลก เช่น การรวมตัวกันของอะตอมจากโฟโตไอออไนเซชันโดยแสงจากดวงอาทิตย์ในตอนกลางวัน, การเรืองแสงที่เกิดจากรังสีคอสมิกที่กระทบกับบรรยากาศชั้นบน และเคมีเรืองแสงซึ่งส่วนใหญ่เกิดจากออกซิเจนและไนโตรเจนทำปฏิกิริยากับอนุมูลอิสระของไฮดรอกซิลที่ความสูงกว่าร้อยกิโลเมตร ซึ่งในช่วงกลางวันจะมองไม่เห็นการเรืองแสงเนื่องจากแสงจ้าและการกระจัดกระจายของแสงอาทิตย์
การเรืองแสงของบรรยากาศมีผลต่อการจำกัดความไวแสงของกล้องโทรทรรศน์ออปติคัลของหอสังเกตการณ์ภาคพื้นดิน แม้ว่าจะมีขนาดและคุณภาพที่ดีที่สุดก็ตาม ด้วยเหตุนี้เป็นส่วนหนึ่งที่ทำให้การสังเกตวัตถุที่มีความสว่างน้อยกว่า (ในช่วงความยาวคลื่นที่ตามองเห็น) จำเป็นต้องอาศัยกล้องโทรทรรศน์อวกาศอย่างฮับเบิล
การเรืองแสงในตอนกลางคืนอาจสว่างเพียงพอที่ผู้สังเกตการณ์ภาคพื้นดินจะสังเกตเห็น โดยทั่วไปแล้วจะปรากฏเป็นสีน้ำเงิน แม้ว่าการแผ่รังสีของการเรืองแสงของบรรยากาศจะค่อนข้างสม่ำเสมอทั่วทั้งบรรยากาศ แต่บริเวณที่สว่างที่สุดมักอยู่ในตำแหน่งเหนือขอบฟ้าของผู้สังเกตประมาณ 10° เนื่องจากมุมมองที่ยิ่งต่ำลง จะมองผ่านมวลของบรรยากาศที่ยิ่งหนามากขึ้น แต่กระนั้นการมองมุมที่ต่ำมากเกินไปจะลดความสว่างของการเรืองแสงของบรรยากาศลง จากการสูญหายในบรรยากาศที่ระดับต่ำ
กลไกหนึ่งของการก่อตัวของการเรืองแสงในบรรยากาศ คือ เมื่ออะตอมของไนโตรเจนรวมกับอะตอมของออกซิเจนเพื่อสร้างโมเลกุลของไนตริกออกไซด์ (NO) ในกระบวนการนี้จะมีการปล่อยโฟตอน โฟตอนนี้อาจมีลักษณะความยาวคลื่นที่แตกต่างกันหลายแบบของโมเลกุลไนตริกออกไซด์ อะตอมอิสระของไนโตรเจน (N) และออกซิเจน (O) เหล่านี้ในกระบวนการสร้างโมเลกุลของไนตริกออกไซด์นี้ เกิดจากโมเลกุลของไนโตรเจน (N2) และออกซิเจน (O2) ที่แตกตัวโดยพลังงานแสงอาทิตย์ที่บริเวณชั้นนอกสุดของบรรยากาศ และจับรวมกันในรูปไนตริกออกไซด์ (NO) สารเคมีอื่น ๆ ที่สามารถทำให้อากาศเรืองแสงได้ในบรรยากาศ ได้แก่ ไฮดรอกซิล (OH)[5][6][7], อะตอมของออกซิเจน (O), โซเดียม (Na) และลิเทียม (Li)[8]
โดยทั่วไป ความสว่างของท้องฟ้าจะวัดเป็นหน่วยของความส่องสว่างปรากฏต่อตารางพิลิปดาของท้องฟ้า
การคำนวณ


แม่แบบ:See alsoในการคำนวณความเข้มสัมพัทธ์ของการเรืองแสงของบรรยากาศ จำเป็นต้องแปลงความส่องสว่างปรากฏเป็นฟลักซ์ของโฟตอน ทั้งนี้ต้องขึ้นอยู่กับสเปกตรัมของแหล่งที่มาของแสง แต่ในการคำนวณจะละเว้นแหล่งที่มาของแสงในเบื้องต้น
ที่ช่วงความยาวคลื่นที่มนุษย์มองเห็นได้ เราต้องใช้พารามิเตอร์ S0(V) คือ กำลังต่อตารางเซนติเมตรของรูรับแสง และต่อไมโครเมตรของความยาวคลื่นที่เกิดจากดาวฤกษ์ขนาดศูนย์ เพื่อแปลงขนาดปรากฏเป็นฟลักซ์ – แม่แบบ:Nowrap.[9] โดยหากเรายกตัวอย่างดาวที่มีค่า V = 28 ที่สังเกตได้ผ่านฟิลเตอร์ V band ปกติ (B = 0.2 µm bandpass, ความถี่ แม่แบบ:Nowrap) จำนวนโฟตอนที่ได้รับต่อตารางเซนติเมตรของรูรับแสงของกล้องโทรทรรศน์ต่อวินาทีจากแหล่งที่มา คือ Ns ดังนี้
(โดยที่ h คือค่าคงตัวของพลังค์; hν คือ พลังงานของโฟตอนเดี่ยว ที่ ความถี่ ν)
ที่ ความถี่ V การเปล่งแสงเรืองของบรรยากาศ คือ V = 22 ต่อตารางพิลิปดา ณ หอสังเกตการณ์ภาคพื้นดินที่อยู่สูงมากเหนือระดับน้ำทะเลและในคืนที่ไร้แสงจันทร์ ในสภาพการมองเห็นที่ดีเยี่ยมนี้ ภาพของดาวฤกษ์จะมีขนาดประมาณ 0.7 พิลิปดา ในพื้นที่ 0.4 ตารางพิลิปดา ดังนั้นการแผ่รังสีจากแสงเหนือพื้นที่ของภาพจะเท่ากับประมาณ V = 23 ซึ่งจะสามารถคำนวณจำนวนโฟตอนจากการเรืองแสงของบรรยากาศ คือ Na ดังนี้
ค่าอัตราส่วนระหว่างสัญญาณกับสัญญาณรบกวน (S/N) สำหรับการสังเกตการณ์ภาคพื้นดินในอุดมคติด้วยกล้องโทรทรรศน์พื้นที่ A (โดยละเว้นการสูญเสียและสัญญาณรบกวนของเครื่องตรวจจับ) ที่เกิดจากสถิติปัวส์ซง คือ
หากเราใช้กล้องโทรทรรศน์ภาคพื้นดินในอุดมคติที่มีเส้นผ่านศูนย์กลาง 10 เมตร เพื่อสังเกตดาวฤกษ์ที่ยังไม่ได้รับการระบุชื่อ ในพื้นที่ขนาดเท่ากับภาพขยายของดาวฤกษ์นั้น ในทุก ๆ วินาที จะพบว่ามีโฟตอน 35 ตัวมาจากดาวฤกษ์ และ 3500 ตัวมาจากการเรืองแสงในบรรยากาศ ดังนั้นในช่วงหนึ่งชั่วโมง ประมาณ แม่แบบ:Val มาจากการเรืองแสงของบรรยากาศ และประมาณ แม่แบบ:Val มาจากแหล่งกำเนิด (ดาวฤกษ์ที่สังเกต) ดังนั้นอัตราส่วน S/N จึงมีค่าประมาณ:
เราสามารถเปรียบเทียบการคำนวณนี้กับสิ่งที่เกิดขึ้นจริง จากเครื่องคำนวณเวลาเปิดรับแสง โดยสำหรับเวรีลาร์จเทลิสโกป ที่ขนาด 8 เมตร ตามเครื่องคำนวณเวลาเปิดรับแสงของ FORS ต้องใช้เวลาในการสังเกต 40 ชั่วโมงจึงจะถึงค่า V = 28 ในขณะที่ฮับเบิลที่มีเพียงขนาด 2.4 เมตร ใช้เวลาเพียง 4 ชั่วโมงตามเครื่องคำนวณเวลาเปิดรับแสง ACS และโดยสมมุติฐานหากกล้องโทรทรรศน์ฮับเบิลมีขนาด 8 เมตรจะใช้เวลาประมาณ 30 นาที
ควรเข้าใจให้ชัดเจนในการคำนวณนี้ว่า การลดขนาดช่องมองภาพของกล้องโทรทรรศน์สามารถทำให้วัตถุที่จางลงสามารถได้รับตรวจจับได้ง่ายขึ้นจากการหลีกเลี่ยงการเรืองแสงของบรรยากาศได้ดีกว่า แต่น่าเสียดายที่เทคนิคอะแดปทีฟออปติกส์ ที่ช่วยลดขนาดเส้นผ่านศูนย์กลางของช่องมองภาพของกล้องโทรทรรศน์บนพื้นโลกยังใช้งานได้เฉพาะในย่านความถี่อินฟราเรดในขณะที่ท้องฟ้าสว่างกว่ามาก กล้องโทรทรรศน์อวกาศไม่ได้ถูกจำกัดโดยขนาดช่องมอง เนื่องจากไม่ได้รับผลกระทบจากแสงจ้า
การเรืองแสงของบรรยากาศจากการเหนี่ยวนำ

มีการทดลองทางวิทยาศาสตร์เพื่อเหนี่ยวนำให้เกิดการเรืองแสงของบรรยากาศ โดยการปล่อยคลื่นวิทยุกำลังสูงที่บรรยากาศชั้นไอโอโนสเฟียร์ของโลก[10] โดยที่ความยาวคลื่นเฉพาะเจาะจงและภายใต้เงื่อนไขบางประการ[11] คลื่นวิทยุเหล่านี้มีปฏิสัมพันธ์กับไอโอโนสเฟียร์เพื่อเหนี่ยวนำแสงที่มองเห็นได้แต่จาง ๆ นอกจากนี้ยังสามารถสังเกตผลกระทบได้ในย่านความถี่วิทยุโดยใช้ไอโอโนซอน
การสังเกตการเรืองแสงของบรรยากาศบนดาวเคราะห์ดวงอื่น
ยานอวกาศวีนัสเอ็กซ์เพรส (Venus Express) มีเซ็นเซอร์อินฟราเรดซึ่งตรวจจับการปล่อยรังสีย่านอินฟราเรดจากชั้นบรรยากาศของดาวศุกร์ การปล่อยรังสีนี้ (การเรืองแสง) มาจากไนตริกออกไซด์ (NO) และจากโมเลกุลออกซิเจน[12][13] ก่อนหน้านี้นักวิทยาศาสตร์ได้เคยพบจากการทดสอบในห้องปฏิบัติการว่าในระหว่างการผลิต NO จะเกิดการปล่อยรังสีอัลตราไวโอเลตและรังสีอินฟราเรดใกล้ มีการตรวจพบรังสีอัลตราไวโอเลตจริงในชั้นบรรยากาศ แต่จนถึงภารกิจการสำรวจดาวศุกร์นี้การปล่อยรังสีย่านอินฟราเรดใที่ผลิตโดยบรรยากาศนั้นยังคงเป็นเพียงทฤษฎีเท่านั้น[14]
ระเบียงภาพ
-
เฉดสีแดงและสีเขียวที่ส่องสว่างบนท้องฟ้าเกิดจากการเรืองแสงของบรรยากาศ[15]
-
การเรืองแสงของบรรยากาศเหนือหอสังเกตการณ์ดาราศาสตร์ปารานัล (Paranal Observatory)[16]
-
การเรืองแสงของบรรยากาศที่แคว้นโอแวร์ญ (ฝรั่งเศส) เมื่อวันที่ 13 สิงหาคม ค.ศ. 2015
ดูเพิ่ม
อ้างอิง
ลิ้งค์ภายนอก
- ภาพและคำอธิบายอื่น ๆ
- คำสัมภาษณ์เกี่ยวการค้นพบการเรืองแสงของบรรยากาศของดาวอังคาร
- Stereoscopic Observations of HAARP Glows from HIPAS, Poker Flat, and Nenana, Alaska by R.F. Wuerker et al.
- An improved signal-to-noise ratio of a cool imaging photon detector for Fabry - Perot interferometer measurements of low-intensity air glow by T P Davies and P L Dyson
- Space Telescope Imaging Spectrograph Instrument Handbook for Cycle 13
- SwissCube| The first Swiss Satellite
- ↑ แม่แบบ:Cite web
- ↑ แม่แบบ:Cite web
- ↑ 3.0 3.1 แม่แบบ:Cite web
- ↑ M. G. J. Minnaert, De natuurkunde van 't vrije veld, Deel 2: Geluid, warmte, elektriciteit. § 248: Het ionosfeerlicht
- ↑ แม่แบบ:Cite journal
- ↑ แม่แบบ:Cite journal
- ↑ แม่แบบ:Cite journal
- ↑ แม่แบบ:Cite journal
- ↑ High Energy Astrophysics: Particles, Photons and Their Detection Vol 1, Malcolm S. Longair, แม่แบบ:ISBN
- ↑ HF-induced airglow at magnetic zenith: Thermal and parametric instabilities near electron gyroharmonics. E.V. Mishin et al., Geophysical Research Letters Vol. 32, L23106, แม่แบบ:Doi, 2005
- ↑ NRL HAARP Overview แม่แบบ:Webarchive. Naval Research Laboratory.
- ↑ แม่แบบ:Cite journal
- ↑ แม่แบบ:Cite journal
- ↑ แม่แบบ:Cite journal
- ↑ แม่แบบ:Cite web
- ↑ แม่แบบ:Cite web