ตัวบ่งปริมาณ (หนึ่งตัว)

จาก testwiki
รุ่นแก้ไขเมื่อ 15:24, 30 ธันวาคม 2567 โดย imported>อมฤตาลัย (ภาพรวม)
(ต่าง) ←รุ่นแก้ไขก่อนหน้า | รุ่นแก้ไขล่าสุด (ต่าง) | รุ่นแก้ไขถัดไป→ (ต่าง)
ไปยังการนำทาง ไปยังการค้นหา

ในวิชาคณิตศาสตร์ สาขาตรรกศาสตร์ ประโยคที่ว่า "มี...หนึ่งตัว" ใช้เพื่อแสดงว่ามีสมาชิกตัวใดตัวหนึ่งที่สอดคล้องกับเงื่อนไขอย่างแน่นอน ตัวบ่งปริมาณตัวนี้ เป็นที่รู้จักกันในชื่อ ตัวบ่งปริมาณเอกลักษณ์ หรือ ตัวบ่งปริมาณแบบหนึ่งตัว (แม่แบบ:Langx)

ใช้สัญลักษณ์ ∃! หรือ ∃=1 ยกตัวอย่าง ประโยคต่อไปนี้

!n(n2=4)

หรือจะอ่านได้ว่า "มีจำนวนธรรมชาติ n อยู่หนึ่งตัว ซึ่ง n - 2 = 4

สัญลักษณ์ของตัวบ่งปริมาณหนึ่งตัว

การพิสูจน์เอกลักษณ์

การพิสูจน์เอกลักษณ์ที่นิยมใช้กันคือการพิสูจน์ตัวแรกตามเงื่อนไข แล้วสมมติให้มีจำนวน ๆ หนึ่งอยู่สองตัว (a และ b) ที่จะลงตัวกับเงื่อนไขได้พอดี และสมมูลกับประโยคนั้น ๆ

อนึ่ง a = b

ยกตัวอย่างการพิสูจน์ ว่า x + 2 = 5 มีเพียงคำตอบเดียว ขั้นแรก จะเป็นการพิสูจน์โดยการสาธิตว่ามีคำตอบอยู่อย่างน้อยหนึ่งตัวแน่นอน ซึ่งก็คือ 3 จะเริ่มการพิสูจน์ส่วนนี้อย่างง่ายก่อน

3+2=5

ตอนนี้ ก็สมมติให้มีสองคำตอบ เป็น a และ b ซึ่งจะลงตัวกับ x + 2 = 5 ดังนั้น

a+2=5 และ b+2=5

การดำเนินการของสมการ

a+2=b+2

ใช้หลักการตัดทิ้ง

a=b

ตัวอย่างการพิสูจน์ตัวบ่งปริมาณแบบหนึ่งตัวง่าย ๆ ผลสุดท้าย นิพจน์ของทั้งสองข้างจะมีค่าเท่ากัน ซึ่งจะมาทำให้สอดคล้องกับเงื่อนไข

การพิสูจน์หาค่า a ซึ่งสอดคล้องกับเงื่อนไข และพิสูจน์ว่า สำหรับ x ใด ๆ หมายความว่า เงื่อนไขของ x จะมีค่าเป็น x=a

การลดรูปเป็นตัวบ่งปริมาณแบบบางตัวและตัวบ่งปริมาณแบบทั้งหมด

ตัวบ่งปริมาณแบบหนึ่งตัวในบางครั้งยังเขียนได้ในรูปของตัวบ่งปริมาณแบบบางตัวและทั้งหมดในเชิงของตรรกศาสตร์พิสูจน์ โดยกำหนดประโยค

!xP(x)

ซึ่งสมมูลกับ

x(P(x)¬y(P(y)yx))

และ

x(P(x)y(P(y)y=x))

ประโยคที่จะใช้กฎเพื่อแยกเงื่อนไขของตัวบ่งปริมาณแบบบางตัวและทั้งหมดเป็นสองเงื่อนไข หากจะเขียนสั้น ๆ จะได้

xP(x)yz((P(y)P(z))y=z)

ลดลงมาอีกจะได้

xy(P(y)y=x)

ภาพรวม

อีกหนึ่งภาพรวมของตัวบ่งปริมาณหนึ่งตัวคือจำนวนสมาชิก ซึ่งจะรวมอีกสองตัวบ่งปริมาณเป็นในแบบ "มี k ตัวซึ่ง..." เหมือนกับ "มีสมาชิกซึ่งระบุได้มีอยู่ซึ่ง..." และ "มีสมาชิกระบุได้หลายตัวซึ่ง..." ตัวอย่างข้างต้นเป็นการแสดงโดยใช้ตัวบ่งปริมาณลำดับ แต่สองตัวอย่างสุดท้าย จะแสดงเป็นลำดับในตรรกศาสตร์จัดลำดับไม่ได้

"ความเป็นเอกลักษณ์ (หนึ่งตัว)" จะขึ้นกับ "ความเข้าใจ" ความสัมพันธ์ของตัวบ่งปริมาณนี้ไม่ตายตัว ซึ่งจะขึ้นอยู่กับนิพจน์หรือสมการ (ในสาขานี้ ความเป็นเอกลักษณ์ปกติคือ "เป็นเอกลักษณ์ที่ขึ้นกับสมการ/นิพจน์") เช่น หลาย ๆ แนวคิดของทฤษฎีจัดลำดับจะเป็น "เป็นเอกลักษณ์ขึ้นกับรูปร่าง"

ดูเพิ่ม

อ้างอิง

  • Kleene, Stephen (1952). Introduction to Mathematics. Ishi Press International หน้า 199
  • Andrews, Peter B. An Introduction to Mathematical logic and type theory to truth through proof (2. ed.). Dordrecht: Kluwer Acad. Publ. หน้า 233. ISBN 1-4020-0763-9