แรงเคลื่อนไฟฟ้า

จาก testwiki
รุ่นแก้ไขเมื่อ 05:08, 24 กุมภาพันธ์ 2568 โดย imported>Siam2019 (ย้อนการก่อกวน 1 ครั้งของ 2403:6200:8881:9A58:AA5F:35E9:D4F0:F85D (พูดคุย) ไปยังรุ่นโดย อมฤตาลัย ด้วยสจห.)
(ต่าง) ←รุ่นแก้ไขก่อนหน้า | รุ่นแก้ไขล่าสุด (ต่าง) | รุ่นแก้ไขถัดไป→ (ต่าง)
ไปยังการนำทาง ไปยังการค้นหา

แม่แบบ:ระวังสับสน แม่แบบ:ทฤษฎีแม่เหล็กไฟฟ้า

แรงเคลื่อนไฟฟ้า (แม่แบบ:Langx สัญลักษณ์ และมีค่าเป็นโวลต์)[1] เป็นแรงดันไฟฟ้าที่พัฒนาขึ้นมาจากแหล่งที่มาของพลังงานไฟฟ้าใด ๆ เช่นแบตเตอรี่หรือเครื่องกำเนิดไฟฟ้า โดยทั่วไปมันจะถูกกำหนดให้เป็นศักย์ไฟฟ้าสำหรับแหล่งจ่ายไฟในวงจร[2] อุปกรณ์ที่จ่ายพลังงานไฟฟ้าจะถูกเรียกว่าแปลงแรงเคลื่อนไฟฟ้า (แม่แบบ:Langx) หรือ emf Emf จะแปลงพลังงานเคมี, พลังงานเครื่องกล, และพลังงานรูปแบบอื่นให้เป็นพลังงานไฟฟ้า[3] ผลผลิตของอุปกรณ์ดังกล่าวก็ยังถูกเรียกว่า emf อีกด้วย

คำว่า "แรง" ในกรณีนี้ไม่ได้ใช้เพื่อหมายถึงแรงในเชิงกลที่มีหน่วยเป็นนิวตัน แต่เป็นศักย์หรือพลังงานต่อหน่วยประจุ มีหน่วยเป็นโวลต์

ในการเหนี่ยวนำแม่เหล็กไฟฟ้า EMF สามารถถูกกำหนดรอบ ๆ วงรอบปิดวงหนึ่งว่าเป็นงานแม่เหล็กไฟฟ้าที่กระทำบนประจุตัวหนึ่งถ้ามันเดินทางรอบวงนั้นหนึ่งรอบ[4] (ในขณะที่ประจุเดินทางรอบวงลูป มันก็สามารถสูญเสียพลังงานไปพร้อมกันพลังงานที่ได้รับมาผ่านความต้านทานกลายเป็นพลังงานความร้อน) สำหรับสนามแม่เหล็กที่แปรผันตามเวลาที่มีการเชื่อมโยงอยู่กับลูป สนามศักย์ไฟฟ้​​าที่มีหน่วยเป็นสเกลาร์จะยังไม่ถูกกำหนดเนื่องจากสนามไฟฟ้าแบบเวกเตอร์ยังคงไหลเวียน แต่อย่างไรก็ตาม EMF ก็ทำงานแล้วและสามารถวัดได้เป็นศักย์ไฟฟ้าเสมือนรอบลูปนั้น[5]

ในกรณีของอุปกรณ์สองขั้ว (เช่นแบตเตอรีไฟฟ้าเคมีหรือเครื่องกำเนิดไฟฟ้าแบบแม่เหล็กไฟฟ้า) ซึ่งถูกจำลองเป็นวงจรสมมูลของ Thévenin EMF ที่เทียบเท่าสามารถวัดได้เป็นความต่างศักย์แบบวงจรเปิดหรือแรงดันระหว่างขั้วทั้งสอง ความต่างศักย์นี้สามารถขับกระแสให้ไหลได้ถ้าขั้วไฟฟ้าทั้งสองถูกต่อเข้ากับวงจรภายนอก

อุปกรณ์ที่ให้แรงเคลื่อนไฟฟ้าจะรวมถึงเซลล์ไฟฟ้าเคมี, อุปกรณ์เทอร์โมอิเล็กตริก, เซลล์แสงอาทิตย์, โฟโตไดโอด, เครื่องกำเนิดไฟฟ้า, หม้อแปลง, และแม้แต่เครื่องกำเนิดไฟฟ้าแวนเดอแกรฟฟ์[5][6] ในธรรมชาติ EMF ถูกสร้างขึ้นเมื่อใดก็ตามที่ความผันผวนของสนามแม่เหล็กจะเกิดขึ้นผ่านพื้นผิว การเคลื่อนที่ของสนามแม่เหล็กโลกในระหว่างพายุแม่เหล็กทำให้เกิดกระแสในกริดไฟฟ้​​าเมื่อเส้นสนามแม่เหล็กเคลื่อนที่ไปรอบ ๆ และตัดผ่านตัวนำ

ในกรณีที่เป็นแบตเตอรี่ การแยกตัวของประจุที่ก่อให้เกิดความต่างแรงดันระหว่างขั้วทั้งสองสามารถทำสำเร็จได้โดยปฏิกิริยาเคมีที่ขั้วไฟฟ้าที่จะแปลงพลังงานเคมีให้เป็นพลังงานศักย์แม่เหล็กไฟฟ้า[7][8] เซลล์ไฟฟ้าอาจคิดว่าเป็นการมี "ปั๊มประจุ" ที่มีขนาดเท่าอะตอมที่แต่ละขั้วไฟฟ้า นั่นคือ[9]

แหล่งที่มาของแรงเคลื่อนไฟฟ้าอาจจะคิดได้ว่าเป็นชนิดหนึ่งของปั้มประจุที่ทำหน้าที่ในการเคลื่อนย้ายประจุบวกจากจุดที่มีศักย์ไฟฟ้าต่ำผ่านตัวมันเองไปยังจุดที่มีศักย์ไฟฟ้าที่สูงกว่า ... โดยวิธีการทางเคมี, ทางกลไกหรือทางอื่น ๆ แหล่งที่มาของแรงเคลื่อนไฟฟ้าจะทำงาน dW บนประจุนั้นเพื่อที่จะเคลื่อนย้ายประจุไปยังขั้วที่มีศักยภาพสูง แรงเคลื่อนไฟฟ้า ของแหล่งที่มาจะถูกกำหนดให้เป็นงาน dW ที่ทำบนประจุ dq ดังนั้น = dW/dq

ราวปี 1830 ไมเคิล ฟาราเดย์ระบุว่าปฏิกิริยาในแต่ละรอยต่อสองรอยต่อระหว่างขั้วไฟฟ้ากับสารอิเล็กโทรไลต์จะให้ "EMF" สำหรับเซลล์ไฟฟ้า นั่นคือ ปฏิกิริยาเหล่านี้เป็นตัวขับเคลิ่อนกระแสและไม่ได้เป็นแหล่งที่มาของพลังงานที่ไม่มีที่สิ้นสุดอย่างที่ติดไว้แต่แรก[10] ในกรณีของวงจรเปิด การแยกตัวของประจุจะดำเนินต่อไปจนกระทั่งสนามไฟฟ้าจากประจุที่ถูกแยกตัวมีปริมาณเพียงพอที่จะหยุดปฏิกิริยา หลายปีก่อนหน้านี้ อาเลสซานโดร โวลตา ผู้ที่วัดความต่างศักย์ของจุดสัมผัสระหว่างโลหะกับโลหะ (ขั้วไฟฟ้ากับอิเล็กโทรด) ของเซลล์ของเขา เขาได้ให้ความคิดเห็นที่ไม่ถูกต้องที่ว่าจุดสัมผัสเพียงอย่างเดียว (โดยไม่คำนึงถึงปฏิกิริยาทางเคมี) เป็นต้นกำเนิดของ EMF

ในกรณีของเครื่องกำเนิดไฟฟ้า สนามแม่เหล็กที่แปรตามเวลาภายในเครื่องกำเนิดไฟฟ้าจะสร้างสนามไฟฟ้าผ่านการเหนี่ยวนำแม่เหล็กไฟฟ้า ซึ่งมีผลในการสร้างความต่างแรงดันระหว่างขั้วทั้งสองของเครื่องกำเนิดไฟฟ้า การแยกตัวของประจุจะเกิดขึ้นภายในเครื่องกำเนิดไฟฟ้าที่อิเล็กตรอนจะไหลออกไปจากขั้วไฟฟ้าหนึ่งไปยังอีกขั้วไฟฟ้าหนึ่ง จนกระทั่ง ในกรณีวงจรเปิด สนามไฟฟ้าที่พอเพียงจะสะสมขึ้นจนทำให้การแยกตัวของประจุดำเนินต่อไปไม่ได้ อีกครั้ง EMF จะเผชิญหน้ากับแรงดันไฟฟ้าอันเกิดจากการแยกประจุ ถ้ามีโหลดต่อเข้าไป แรงดันไฟฟ้านี้สามารถขับเคลื่อนกระแสได้ หลักการทั่วไปในการควบคุม EMF ในเครื่องจักรไฟฟ้าดังกล่าวเป็นกฎการเหนี่ยวนำของฟาราเดย์

สัญลักษณ์และหน่วยการวัด

แรงเคลื่อนไฟฟ้ามักจะมีสัญลักษณ์เป็น หรือ

ในอุปกรณ์ที่ไม่มีความต้านทานภายใน ถ้าประจุไฟฟ้า Q ไหลผ่านอุปกรณ์นั้นและได้รับพลังงาน W ค่า emf สุทธิสำหรับอุปกรณ์นั้นจะเป็นพลังงานที่ได้รับต่อหน่วยประจุหรือ W/Q. เช่นเดียวกับการวัดอื่น ๆ ของพลังงานต่อประจุ emf มีหน่วย SI เป็นโวลต์ที่เทียบเท่ากับจูลต่อคูลอมบ์[11]

แรงเคลื่อนไฟฟ้าในหน่วยไฟฟ้าสถิตจะเป็น statvolt (ในเซนติเมตรกรัมระบบที่สองของหน่วยที่เท่ากับจำนวนเอิร์กต่อหน่วยประจุไฟฟ้าสถิต)

คำจำกัดความอย่างเป็นทางการของแรงเคลื่อนไฟฟ้​​า

ภายใน แหล่งจ่ายแรงเคลื่อนไฟฟ้าแบบวงจรเปิด สนามไฟฟ้าสถิตแบบอนุรักษ์นิยมที่สร้างขึ้นโดยการแยกของประจุจะหักล้างแรงทั้งหลายที่สร้างแรงเคลื่อนไฟฟ้าขึ้น ดังนั้นแรงเคลื่อนไฟฟ้ามีค่าเท่ากัน แต่มีเครื่องหมายตรงข้ามเมื่อผลรวม (แม่แบบ:Langx) ของสนามไฟฟ้าอยู่ในแนวเดียวกันกับเส้นทางภายในระหว่างสองขั้ว A และ B ของแหล่งจ่ายแรงเคลื่อนไฟฟ้าในสภาพวงจรเปิด (เส้นทางจะนำจากขั้วลบไปยังขั้วบวกเพื่อที่จะให้ EMF ออกมาเป็นบวก ซึ่งจะแสดงให้เห็นงานที่กระทำบนอิเล็กตรอนที่กำลังเคลื่อนที่ในวงจร)[12] สูตรทางคณิตศาสตร์จะเป็นดังนี้:

=AB𝑬csd 

เมื่อ Ecs เป็นสนามไฟฟ้าสถิตแบบอนุรักษ์นิยมที่ถูกสร้างขึ้นโดยการแยกประจุที่เกี่ยวข้องกับแรงเคลื่อนไฟฟ้า, d เป็นองค์ประกอบของเส้นทางจากขั้ว A ไปยังขั้ว B, และ ‘·’ หมายถึงผลคูณจุด (แม่แบบ:Langx) (ค่าจริง (ค่าสเกลล่าร์) ที่เป็นผลคูณของค่าเวกเตอร์สองตัว)[13] สมการนี้​​ใช้เฉพาะกับตำแหน่ง A และตำแหน่ง B เท่านั้นที่เป็นขั้วไฟฟ้า และไม่ได้นำไปใช้กับเส้นทางระหว่างจุด A และจุด B ที่มีบางส่วนด้านนอกของแหล่งที่มาของแรงเคลื่อนไฟฟ้า สมการนี้​​้เกี่ยวข้องกับสนามไฟฟ้าที่เป็นไฟฟ้าสถิตที่เกิดเนื่องจากการแยกประจุ Ecs และไม่เกี่ยวข้องกับ (ตัวอย่างเช่น) ส่วนประกอบใด ๆ ของสนามไฟฟ้าที่ไม่ใช่แบบอนุรักษ์นิยมอันเกิดเนื่องจากกฎการเหนี่ยวนำของฟาราเดย์

ในกรณีที่เส้นทางถูกปิดเนื่องจากสนามแม่เหล็กที่แปรตามเวลา อินทีกรัลของสนามไฟฟ้ารอบวงลูปปิดอาจไม่เป็นศูนย์; การใช้งานทั่วไปชนิดที่ใช้แนวคิดของแรงเคลื่อนไฟฟ้าที่เรียกว่า "แรงเคลื่อนไฟฟ้าเหนี่ยวนำ" คือแรงดันไฟฟ้าเหนี่ยวนำในวงลูปดังกล่าว[14] "แรงเคลื่อนไฟฟ้าเหนี่ยวนำ" รอบเส้นทางปิดอยู่กับที่ C จะเป็น:

=C𝑬d 

เมื่อ E ในตอนนี้เป็นสนามไฟฟ้าโดยรวมทั้งหมดทั้งแบบอนุรักษ์และไม่อนุรักษ์ และอินทีกรัลจะอยู่รอบ ๆ โค้งปิด C ที่ไม่มีกฎเกณฑ์และอยู่กับที่โดยมีสนามแม่เหล็กที่แปรเปลี่ยนไหลผ่านโค้งปิด C นั้น สนามไฟฟ้าสถิตไม่ได้ช่วยอุดหนุนกับ EMF สุทธิที่ปรากฏรอบวงจรนั้นเพราะส่วนของไฟฟ้าสถิตของสนามไฟฟ้าเป็นแบบอนุรักษ์ (นั่นคืองานที่กระทำต้านกับสนามที่อยู่รอบ ๆ เส้นทางปิดมีค่าเป็นศูนย์)


นิยามนี้สามารถขยายไปยังแหล่งที่มาแบบไร้กฎเกณฑ์ของแรงเคลื่อนไฟฟ้าและเส้นทางการเคลื่อนที่ C:[15]

=C[𝑬+𝒗×𝑩]d 
+1qC𝐞𝐟𝐟𝐞𝐜𝐭𝐢𝐯𝐞 𝐜𝐡𝐞𝐦𝐢𝐜𝐚𝐥 𝐟𝐨𝐫𝐜𝐞𝐬  d 
+1qC𝐞𝐟𝐟𝐞𝐜𝐭𝐢𝐯𝐞 𝐭𝐡𝐞𝐫𝐦𝐚𝐥 𝐟𝐨𝐫𝐜𝐞𝐬  d 

ซึ่งเป็นสมการแบบแนวคิดเป็นส่วนใหญ่ เพราะการกำหนด "แรงที่มีประสิทธิภาพ" มีความยากลำบาก

แรงเคลื่อนไฟฟ้าในอุณหพลศาสตร์

เมื่อคูณด้วยปริมาณของประจุ dQ แรงเคลื่อนไฟฟ้า ℰ จะให้ผลตอบแทนเป็นงานด้านอุณหพลศาสตร์ชิ้นหนึ่งมีค่าเป็น ℰdQ ที่ถูกงานแบบเป็นทางการสำหรับการเปลี่ยนแปลงพลังงานกิ๊บส์เมื่อประจุไหลผ่านในแบตเตอรี่:

dG=SdT+VdP+dQ 

เมื่อ G เป็นพลังงานอิสระของกิ๊บส์, S เป็นเอนโทรปี, V เป็นปริมาตรของระบบ, P เป็นความดันของมันและ T เป็นอุณหภูมิสัมบูรณ์ของมัน

การรวมกันของ ℰ และ Q เป็นตัวอย่างหนึ่งของการจับตัวกันเป็นคู่ของตัวแปร (แม่แบบ:Langx) แบบหนึ่ง ที่ความดันคงที่ความสัมพันธ์ข้างต้นจะสร้างความสัมพันธ์แมกซ์เวลที่เชื่อมโยงการเปลี่ยนแปลงในแรงดันไฟฟ้าเซลล์เปิดที่มีอุณหภูมิ T (ปริมาณที่วัดได้) ให้เป็นการเปลี่ยนแปลงในเอนโทรปี S เมื่อประจุผ่านจุด isothermal และ isobaric จุดไอโซแบริกจะเกี่ยวข้องอย่างใกล้ชิดกับปฏิกิริยาเอนโทรปีของปฏิกิริยาไฟฟ้าเคมีที่สร้างพลังงานให้กับแบตเตอรี่ ความสัมพันธ์แมกซ์เวลนี้คือ:[16]

(T)Q=(SQ)T

ถ้าหนึ่งโมลของไอออนกลายเป็นสารละลาย (เช่นในเซลล์ Daniell ตามที่กล่าวไว้ด้านล่าง) ประจุที่ไหลผ่านวงจรภายนอกจะเป็น

ΔQ=n0F0 

เมื่อ n0 เป็นจำนวนของอิเล็กตรอน/ไอออน และ F0 เป็นค่าคงที่ฟาราเดย์และเครื่องหมายลบแสดงการปล่อยประจุของเซลล์ เมื่อกำหนดให้ความดันและปริมาณมีค่าคงที่ คุณสมบัติทางอุณหพลศาสตร์ของเซลล์เกี่ยวข้องอย่างเคร่งครัดกับพฤฒิกรรมของ EMF ของมันโดย:[17]

ΔH=n0F0(TddT) 

เมื่อ ΔH เป็นเอนทัลปีของปฏิกิริยา ปริมาณทางด้านขวาทั้งหมดสามารถวัดได้โดยตรง

แรงเคลื่อนไฟฟ้าและความต่างแรงดัน

ความต่างแรงดันไฟฟ้าบางครั้งถูกเรียกว่าแรงเคลื่อนไฟฟ้า[18][19][20][21][22] หลายจุดด้านล่างจะแสดงให้เห็นถึงการนำไปใช้อย่างเป็นทางการมากขึ้น ในแง่ของความแตกต่างกันระหว่าง EMF และแรงดันไฟฟ้า มันสร้าง:

  1. สำหรับวงจรสมบูรณ์ เช่นในวงจรที่ประกอบด้วยตัวต้านทานต่อแบบอนุกรมกับเซลล์ไฟฟ้า แรงดันไฟฟ้าที่ตกคร่อมจะไม่เสริมกับ EMF ทำให้ความต่างแรงดันไฟฟ้าที่เกิดขึ้นรอบ ๆ วงจรมีค่าเป็นศูนย์ (ในแรงดันไฟฟ้า IR ตามกฎของโอห์ม จะตกคร่อมบวกกับแรงดันไฟฟ้าที่ใส่เข้าไปมีค่าผลรวมเป็นศูนย์ ดูกฎวงจรของ Kirchhoff) แรงเคลื่อนไฟฟ้าเกิดจากสารเคมีในแบตเตอรี่แต่เพียงอย่างเดียว สารเคมีเป็นสาเหตุของการแยกประจุ ซึ่งเป็นผลให้มีการสร้างแรงดันไฟฟ้าที่ขับเคลื่อนกระแส
  2. สำหรับวงจรที่ประกอบด้วยเครื่องกำเนิดไฟฟ้าที่ขับเคลื่อนกระแสผ่านตัวต้านทาน EMF จะเกิดจากสนามแม่เหล็กที่แปรตามเวลาภายในเครื่องกำเนิดไฟฟ้าแต่เพียงอย่างเดียว (IR ตามกฎของโอห์มจะตกคร่อมบวกกับแรงดันไฟฟ้าที่เกิดมีผลรวมเป็นศูนย์อีกครั้ง ดูกฎวงจรของ Kirchhoff))
  3. หม้อแปลงที่เชื่อมสองวงจรเข้าด้วยกันอาจจะถือได้ว่าหม้อแปลงนั้นเป็นแหล่งที่มาของแรงเคลื่อนไฟฟ้าสำหรับหนึ่งในสองวงจรนั้น เหมือนกับว่ามันทำตัวเป็นเครื่องกำเนิดไฟฟ้าตัวหนึ่ง ตัวอย่างนี้แสดงให้เห็นถึงต้นกำเนิดของคำว่า "แรงดันไฟฟ้าหม้อแปลง"
  4. โฟโตไดโอดหรือเซลล์แสงอาทิตย์ตัวหนึ่งอาจจะถือได้ว่าเป็นแหล่งที่มาของแรงเคลื่อนไฟฟ้าตัวหนึ่งที่คล้ายกับแบตเตอรี่ การแยกประจุจะเกิดจากแสงแทนที่จะเป็นปฏิกิริยาทางเคมี เป็นผลให้เกิดแรงดันไฟฟ้า[23]
  5. อุปกรณ์อื่น ๆ ที่สร้างแรงเคลื่อนไฟฟ้าก็คือเซลล์เชื้อเพลิง, คู่ควบความร้อนและthermopile[24]

ในกรณีของวงจรเปิด ประจุไฟฟ้าที่ได้ถูกแยกออกจากกันโดยกลไกการสร้างแรงเคลื่อนไฟฟ้าจะสร้างสนามไฟฟ้าที่ขัดขวางกลไกการแยก ยกตัวอย่างเช่นปฏิกิริยาทางเคมีในเซลล์ไฟฟ้าจะหยุดเมื่อสนามไฟฟ้าที่ขัดขวางสนามไฟฟ้าที่แต่ละขั้วไฟฟ้ามีความแข็งแรงมากพอที่จะหยุดปฏิกิริยา สนามขัดขวางที่มีขนาดใหญ่กว่าสามารถย้อนกลับปฏิกิริยาในสิ่งที่เรียกว่าเซลล์ พลิกกลับ (แม่แบบ:Langx)[25][26]

ประจุไฟฟ้าที่ได้ถูกแยกออกจะสร้างความต่างศักย์ไฟฟ้าที่สามารถวัดได้ด้วยโวลต์มิเตอร์ระหว่างขั้วไฟฟ้าทั้งสองของอุปกรณ์ ขนาดของแรงเคลื่อนไฟฟ้าสำหรับแบตเตอรี่ (หรือแหล่งที่มาอื่น) เป็นค่าของแรงดันไฟฟ้า 'วงจรเปิด' นี้ เมื่อแบตเตอรี่กำลังชาร์จหรือกำลังดีสชาร์จ ตัว EMF เองไม่สามารถถูกวัดได้โดยตรงโดยใช้แรงดันภายนอกเพราะแรงดันไฟฟ้าบางส่วนจะหายไปภายในแหล่งที่มา[19] อย่างไรก็ตามมันสามารถจะอนุมานจากการวัดกระแส I และความต่างแรงดันไฟฟ้า V ในเงื่อนไขที่ความต้านทานภายใน r ได้มีการวัดเรียบร้อยแล้ว ดังนี้

 = V + Ir

การผลิตแรงเคลื่อนไฟฟ้า

แหล่งที่มาจากสารเคมี

แม่แบบ:บทความหลัก

เส้นทางปฏิกิริยาโดยทั่วไปต้องใช้สารปฏิกิริยาในช่วงเริ่มต้นเพื่อที่จะข้ามอุปสรรคพลังงาน เข้าสู่สถานะช่วงกลางและในที่สุดก็เกิดขึ้นในรูปแบบของพลังงานที่ต่ำกว่า ถ้าการแยกประจุเข้ามาเกี่ยวข้อง เป็นภาระที่เกี่ยวข้องกับความแตกต่างของพลังงานนี้สามารถทำให้เกิดแรงเคลื่อนไฟฟ้า ดู Bergmann et al.[27] และการเปลี่ยนสถานะ
เซลล์กัลวานิกโดยใช้สะพานเกลือ

คำถามที่ว่าแบตเตอรี่ (เซลล์กัลวานิก) สามารถสร้างแรงเคลื่อนไฟฟ้าได้อย่างไรเป็นคำถามหนึ่งที่ครอบงำนักวิทยาศาสตร์จำนวนมากในช่วงศตวรรษที่ 19 "แปลงของแรงเคลื่อนไฟฟ้​​า" ในที่สุดก็ถูกกำหนดโดยนายวอลเธอร์ เนินส์ ให้เป็นเบื้องแรกที่จะสัมผัสกันระหว่างขั้วไฟฟ้าและอิเล็กโทรไลต์[28]

โมเลกุลคือกลุ่มของอะตอมที่ยึดเข้าด้วยกันด้วยพันธะทางเคมี และพันธเหล่านี้จะประกอบด้วยแรงไฟฟ้าระหว่างอิเล็กตรอน (ลบ) กับโปรตอน (บวก) โมเลกุลที่อยู่แยกกันเป็นตัวตนที่ถาวร แต่เมื่อโมเลกุลที่ต่างกันถูกนำเข้ามารวมกัน บางชนิดของโมเลกุลสามารถที่จะขโมยอิเล็กตรอนจากโมเลกุลอื่น เป็นผลให้เกิดการแยกประจุ การกระจายเหล่านี้ของประจุจะเกิดขึ้นใหม่พร้อมกันกับการเปลี่ยนแปลงในพลังงานของระบบ และโครงสร้างของอะตอมในโมเลกุล[29] การได้รับอิเล็กตรอนเพิ่มจะถูกเรียกว่า "รีดักชัน" (reduction) และการสูญเสียอิเล็กตรอนไปจะถูกเรียกว่า "ออกซิเดชัน" ปฏิกิริยาที่มีการแลกเปลี่ยนอิเล็กตรอนดังกล่าว (ซึ่งเป็นพื้นฐานสำหรับแบตเตอรี่) จะเรียกว่าปฏิกิริยารีดักชัน-ออกซิเดชันหรือปฏิกิริยารีดอกซ์ ในแบตเตอรี่ ขั้วหนึ่งจะประกอบด้วยวัสดุที่ได้รับอิเล็กตรอนเพิ่มจากตัวละลายและอีกชั้วหนึ่งจะเสียอิเล็กตรอนอันเนื่องมาจากแอตทริบิวต์พื้นฐานของโมเลกุลเหล่านี้ พฤติกรรมที่เหมือนกันจะสามารถเห็นได้ในตัวอะตอมมันเองและความสามารถของพวกมันในการขโมยอิเล็กตรอนจะถูกเรียกว่าเป็น electronegativity ของพวกมัน[30]

ตัวอย่างเช่นเซลล์แดนีลล์ ประกอบด้วยขั้วลบ (แม่แบบ:Langx) ที่ทำจากสังกะสี (ตัวสะสมอิเล็กตรอน) มันถูกออกซิไดซ์เมื่อมันละลายลงในสารละลายสังกะสีซัลเฟต สังกะสีที่ละลายจะทิ้งอิเล็กตรอนของมันไว้ข้างหลังติดอยู่ในขั้วตามปฏิกิริยาออกซิเดชัน (s = อิเล็กโทรดที่เป็นของแข็ง; aq = สารละลายน้ำ) ดังนั้น: Zinc solid = Zinc solution Cation + 2 electrons ตามสมการ

Zn(s)Zn(aq)2++2e 

ในส่วนที่เป็นครึ่งเซลล์นั้น สังกะสีซัลเฟตเป็นอิเล็กโทรไลต์ มันเป็นสารละลายที่มีสังกะสีไอออนประจุบวก (แม่แบบ:Langx) Zn2+ และซัลเฟตไอออนประจุลบ (แม่แบบ:Langx) SO42  ที่มีผลรวมของประจุเป็นศูนย์

ในอีกครึ่งเซลล์ มีทองแดงซัลเฟตเป็นอิเล็กโทรไลต์ ทองแดงไอออนประจุบวกในอิเล็กโทรไลต์จะถูกดึงเข้าหาขั้วทองแดงที่พวกมันจะแนบตัวเองเข้ากับขั้วนี้เนื่องจากพวกมันได้รับอิเล็กตรอนจากขั้วทองแดงจากปฏิกิริยารีดักชันดังนี้:

Cu(aq)2++2eCu(s) 

เป็นผลให้เกิดการขาดทุนอิเล็กตรอนในทองแดงที่เป็นขั้วบวก (แม่แบบ:Langx) ความแตกต่างของอิเล็กตรอนส่วนเกินในขั้วลบและการขาดดุลของอิเล็กตรอนในขั้วบวกสร้างศักย์ไฟฟ้าระหว่างสองขั้วไฟฟ้า (การอภิปรายในรายละเอียดของกระบวนการของการถ่ายโอนแบบจุลภาคของอิเล็กตรอนระหว่างขั้วไฟฟ้าและไอออนในอิเล็กโทรไลต์ในปีอาจพบได้ในคอนเวย์)[31]

หากขั้วลบและขั้วบวกถูกเชื่อมต่อด้วยตัวนำภายนอก อิเล็กตรอนจะไหลออกจากขั้วลบผ่านวงจรภายนอก (หลอดไฟในรูป) ในขณะที่ไอออนทั้งหลายจะผ่านสะพานเกลือเพื่อรักษาสมดุลของประจุจนถึงเวลาที่ขั้วบวกและขั้วลบถึงจุดสมดุลไฟฟ้าที่มีแรงดันเป็นศูนย์และสมดุลเคมีเกิดขึ้นในเซลล์ ในกระบวนการนี้ขั้วลบสังกะสีจะละลายในขณะที่ขั้วไฟฟ้าทองแดงจะพอกพูนด้วยทองแดง[32] สิ่งที่เรียกว่า "เกลือสะพาน" ไม่ได้ทำด้วยเกลือแต่อาจจะทำจากวัสดุที่สามารถดูดซับเหมือนไส้ตะเกียงไอออนบวกและไอออนลบ (เกลือ) ในสารละลาย โดยที่การไหลของไอออนประจุบวกจะไหลไปตาม "สะพาน" เป็นจำนวนเทียบเท่ากับประจุลบที่ไหลไปในทิศทางตรงกันข้าม

ถ้าหลอดไฟจะถูกถอดออกไป (วงจรเปิด) แรงเคลื่อนไฟฟ้าระหว่างขั้วไฟฟ้าจะถูกต่อต้านจากสนามไฟฟ้าที่เกิดเนื่องจากการแยกประจุ และปฏิกิริยาทั้งหลายก็จะหยุด

สำหรับปฏิกิริยาเคมีโดยเฉพาะของเซลล์นี้ ที่ 298 K (อุณหภูมิห้อง) แรงเคลื่อนไฟฟ้า ℰ = 1.0934 V ด้วยค่าสัมประสิทธิ์อุณหภูมิ dℰ/dT = -4.53×10-4 V/K[33]

เซลล์โวลตา

นายแอเลสซานโดร โวลตา ได้พัฒนาเซลล์ไฟฟ้าราวปี 1792 และนำเสนอผลงานของเขาเมื่อวันที่ 20 มีนาคม 1800[34] โวลตาชี้ชัดอย่างถูกต้องในบทบ​​าทของขั้วไฟฟ้าที่แตกต่างกันในการผลิตแรงดันไฟฟ้า แต่ละเลยอย่างไม่ถูกต้องในบทบาทใด ๆ สำหรับอิเล็กโทรไลต์[35] โวลตาได้เรียงลำดับโลหะใน 'แถวแรงดัน' "นั่นคือกล่าวได้ว่าตัวหนึ่งตัวใดในรายการจะกลายเป็นบวกเมื่อติดต่อกับตัวใดตัวหนึ่งที่อยู่ข้างหน้า แต่จะเป็นลบเมื่อติดต่อกับตัวที่อยู่ข้างหลัง"[36] สัญลักษณ์โดยทั่วไปในภาพแสดงของวงจรนี้ ( –||– ) จะมีขีดยาว 1 เส้นและขีดสั้น 1 เส้นเพื่อระบุถึงขีดยาวเหนือกว่า กฎของโวลตาเกี่ยวกับขั้วแรงเคลื่อนไฟฟ้าที่ต่อต้านหมายถึงว่า สมมติว่ามีขั้วไฟฟ้าสิบขั้ว (สังกะสีหนึ่งขั้วและวัสดุอื่น ๆ เก้าขั้วเป็นตัวอย่าง) จะสามารถสร้างเซลล์โวตาอิกได้ 45 แบบ (10×9/2)

แรงเคลื่อนไฟฟ้​​าของเซลล์

แรงเคลื่อนไฟฟ้​​าที่ผลิตโดยเซลล์ปฐมภูมิ (แบบใช้ครั้งเดียว) และทุติยภูมิ (แบบชาร์จไฟได้) มักจะมีขนาดไม่กี่โวลต์ ตัวเลขที่แสดงด้านล่างจะเป็นโดยประมาณ เพราะ EMF จะแปรไปตามขนาดของโหลดและสถานะของความอ่อนล้าของเซลล์

แรงเคลื่อนไฟฟ้​​า สารเคมีในเซลล์ ชื่อสามัญ
ขั้วลบ สารละลาย, อิเล็กโทรไลต์ ขั้วบวก
1.2 V แคดเมียม น้ำ, โปแตสเซียมไฮดรอกไซด์ NiO(OH) นิเกิลแคดเมียม
1.2 V โลหะผสมหายาก (ใช้ดูดซับไฮโดรเจน) น้ำ, โปแตสเซียมไฮดรอกไซด์ นิเกิล นิเกิลเมททัลไฮดรายด์
1.5 V สังกะสี น้ำ, แอมโมเนียมหรือสังกะสีคลอไรด์ คาร์บอน, แมงกานีสไดอ๊อกไซด์ สังกะสีคาร์บอน
2.1 V ตะกั่ว น้ำ, กรดซัลฟิวริก ตะกั่วไดอ๊อกไซด์ ตะกั่วกรด
3.6 V ถึง 3.7 V แกรไฟท์ สารละลายอินทรีย์, เกลือลิเทียม LiCoO2 ลิเทียมไอออน
1.35 V สังกะสี น้ำ, โซเดียมหรือโปแตสเซียมไฮดรอกไซด์ HgO เซลล์ปรอท

การเหนี่ยวนำแม่เหล็กไฟฟ้า

บทความหลัก: กฎการเหนี่ยวนำของฟาราเดย์ หลักการของการเหนี่ยวนำแม่เหล็กไฟฟ้ากล่าวว่าสนามแม่เหล็กที่ขึ้นกับเวลาจะผลิตสนามไฟฟ้าหมุนเวียน สนามแม่เหล็กที่ขึ้นกับเวลาสามารถผลิตขึ้นได้โดยการเคลื่อนที่ของแม่เหล็กให้สัมพันธ์กับวงจรหนึ่ง หรือโดยการเคลื่อนที่ของวงจรหนึ่งที่สัมพันธ์กับอีกวงจรหนึ่ง (อย่างน้อยหนึ่งในวงจรเหล่านี้จะต้องมีกระแสไหล) หรือโดยการเปลี่ยนแปลงกระแสในวงจรคงที่ ผลกระทบต่อตัววงจรเองที่มีการเปลี่ยนแปลงกระแสเรียกว่าการเหนี่ยวนำตัวเอง; ผลกระทบกับวงจรอื่นเรียกว่าการเหนี่ยวนำซึ่งกันและกัน

สำหรับวงจรหนึ่งที่กำหนดให้ แรงเคลื่อนไฟฟ้าที่เกิดจากการเหนี่ยวนำแม่เหล็กไฟฟ้าจะถูกกำหนดอย่างเดียวโดยอัตราการเปลี่ยนแปลงของสนามแม่เหล็กที่พาดผ่านวงจรตามกฎการเหนี่ยวนำของฟาราเดย์

EMF จะถูกเหนี่ยวนำในขดลวดหรือตัวนำเมื่อใดก็ตามที่มีการเปลี่ยนแปลงในสนามแม่เหล็กที่เชื่อมโยงอยู่ ทั้งนี้ขึ้นอยู่กับวิธีการที่เกิดการเปลี่ยนแปลงนั้น มีสองชนิด: 1. เมื่อตัวนำเคลื่อนที่ไปในสนามแม่เหล็กที่อยู่กับที่เพื่อสร้างการเปลี่ยนแปลงในสนามแม่เหล็ก แรงเคลื่อนไฟฟ้าจะถูกเหนี่ยวนำแบบไฟฟ้าสถิตย์ แรงเคลื่อนไฟฟ้าที่สร้างขึ้นจากการเคลื่อนไหวมักจะถูกเรียกว่า EMF เคลื่อนไหว เมื่อการเปลี่ยนแปลงของสนามแม่เหล็กเกิดขึ้นรอบ ๆ ตัวนำอยู่กับที่ แรงเคลื่อนไฟฟ้าจะถูกเหนี่ยวนำแบบไดนามิก แรงเคลื่อนไฟฟ้​​าที่เกิดจากสนามแม่เหล็กที่แปรตามเวลาจะเรียกว่า EMF หม้อแปลง

ศักย์สัมผัส

ดูเพิ่มเติม: ศักย์โวลตาและศักย์ไฟฟ้าเคมี

เมื่อของแข็งของวัสดุสองชนิดที่แตกต่างกันสัมผัสกัน สมดุลทางอุณหพลศาสตร์จะเกิดขึ้นได้เมื่อหนึ่งในของแข็งนั้นมีศักย์ไฟฟ้าสูงกว่าอีกตัวหนึ่ง ศักย์ไฟฟ้านี้เรียกว่าศักย์สัมผัส[37] โลหะที่ไม่เหมือนกันเมื่อสัมผัสกันจะผลิตสิ่งที่เป็นเรียกว่าแรงเคลื่อนไฟฟ้าที่จุดสัมผัส หรือศักย์ของกัลวานี ขนาดของความต่างศักย์นี้มักจะถูกพูดถึงเป็นความแตกต่างของระดับเฟอมิ (แม่แบบ:Langx) ในสองของแข็งเมื่อพวกมันอยู่ในสภาวะเป็นกลางในประจุ ซึ่งเป็นจุดที่ระดับเฟอมิ (ชื่อสำหรับศักย์ทางเคมีของระบบอิเล็กตรอนระบบหนึ่ง[38][39]) จะอธิบายถึงพลังงานที่จำเป็นในการย้ายอิเล็กตรอนออกจากร่างกายไปยังบางจุดที่ใช้ร่วมกัน (เช่นกราวด์)[40] ถ้ามีข้อได้เปรียบทางพลังงานในการนำอิเล็กตรอนจากร่างกายหนึ่งไปยังอีกร่างกายหนึ่ง การโอนเช่นนั้นก็จะเกิดขึ้น การโอนทำให้เกิดการแยกประจุ ที่ร่างกายหนึ่งจะได้รับอิเล็กตรอนและอีกร่างกายหนึ่งสูญเสียอิเล็กตรอน การถ่ายโอนประจุนี้ทำให้เกิดความต่างศักย์ระหว่างร่างกายทั้งสอง ซึ่งบางส่วนหักล้างศักย์ที่มีต้นกำเนิดจากหน้าสัมผัส และก็ถึงจุดสมดุลในที่สุด ที่จุดสมดุลทางอุณหพลศาสตร์ระดับเฟอมิทั้งหมดจะมีค่าเท่ากัน (พลังงานในการเคลื่อนย้ายอิเล็กตรอนจะเท่ากัน) และในขณะนี้จะมีศักย์ไฟฟ้าสถิตฝังในตัวระหว่างร่างกายทั้งสอง ความแตกต่างในระดับเฟอมิทั้งหลายที่มีอยู่แต่เดิมก่อนสัมผัสจะเรียกว่าแรงเคลื่อนไฟฟ้า[41] ศักย์สัมผัสไม่สามารถขับเคลื่อนกระแสให้ไหลได้อย่างต่อเนื่องผ่านโหลดที่ต่ออยู่ขั้วของมันเพราะกระแสนั้นจะเกี่ยวข้องกับการถ่ายโอนประจุ ไม่มีกลไกใดที่จะทำให้การถ่ายโอนดังกล่าวดำเนินการต่อไปได้ และดังนั้นก็ไม่สามารถรักษาระดับของกระแสต่อไปได้ เมื่อบรรลุความสมดุลแล้ว

อาจมีบางคนถามว่าทำไมศักย์สัมผัสไม่ปรากฏในกฎของแรงดันไฟฟ้าของเคอร์ชอฟฟ์ที่เป็นตัวช่วยหนึ่งให้กับผลรวมของศักย์ไฟฟ้าตกคร่อม คำตอบตามประเพณีก็คือวงจรใด ๆ จะเกี่ยวข้องกับไม่เพียงแต่ไดโอดหรือจังชันบางชนิดเท่านั้น แต่ยังเกี่ยวข้องกับศักย์สัมผัสทั้งหมดที่เกิดเนื่องจากการเดินสายไฟและศักย์อื่นรอบ ๆ วงจรทั้งหมดอีกด้วย ผลรวมของศักย์สัมผัส ทั้งหมด จะเป็นศูนย์ ดังนั้นพวกมันอาจถูกละเว้นในกฎของเคอร์ชอฟฟ์[42][43]

เซลล์แสงอาทิตย์

แม่แบบ:หลัก

วงจรเทียบเท่าของเซลล์แสงอาทิตย์; ความต้านทานกาฝากทุกตัวจะไม่ถูกพูดถึงในบทความ
แรงดันไฟฟ้าเซลล์แสงอาทิตย์เป็นหน้าที่หนึ่งของกระแสเซลล์แสงอาทิตย์ที่ถูกส่งไปยังโหลดสำหรับสองกระแสที่เกิดจากแสง IL กระแสทั้งสองเป็นอัตราส่วนกับกระแสอิ่มตัวย้อนกลับ I0 โปรดเทียบกับรูป 1.4 ในเนลสัน[44]

การทำงานของเซลล์แสงอาทิตย์สามารถเข้าใจได้จากวงจรเทียบเท่าทางขวา แสงที่มีพลังงานเพียงพอ (มากกว่า bandgap ของวัสดุ) จะสร้างคู่อิเล็กตรอน-โฮลที่เคลื่อนที่ได้ในสารกึ่งตัวนำ การแยกประจุจะเกิดขึ้นเนื่องจากสนามไฟฟ้าที่มีอยู่ก่อน โดยสนามไฟฟ้านี้จะเกี่ยวข้องกับรอยต่อ P-N ในภาวะสมดุลความร้อน (ศักย์สัมผัสจะสร้างสนาม) การแยกประจุระหว่างหลุมบวกและอิเล็กตรอนลบข้ามรอยต่อ P-N (ไดโอด) ให้ผลลัพธ์เป็นแรงดันไฟฟ้าไปข้างหน้า (แม่แบบ:Langx) หรือ แรงดันภาพ (แม่แบบ:Langx) ระหว่างขั้วไดโอดที่เรืองแสง[45] ตามที่ได้มีการตั้งข้อสังเกตไว้ก่อนหน้านี้ในส่วนของการตั้งชื่อ แรงดันภาพบางครั้งหมายถึงแรงเคลื่อนไฟฟ้าภาพ มากกว่าที่จะแยกความแตกต่างระหว่างผลกระทบและสาเหตุ การแยกประจุทำให้เกิดแรงดันภาพที่ขับเคลื่อนกระแสให้ไหลโหลดใด ๆ ที่ต่ออยู่

กระแสที่พร้อมส่งไปให้กับวงจรภายนอกจะถูกจำกัดโดยความสูญเสียภายใน ความสูญเสียภายในเกิดจากความต้านทานของไดโอดเองและความต้านทานแฝง (RSH) ถ้ากระแสสูญเสียกำหนดให้มีค่าเป็น I0 ดังนั้นตามรูป I0=ISH + ID:

I=ILI0=ILISHID

ความสูญเสียทั้งหลายจะจำกัดกระแสที่พร้อมจ่ายให้กับวงจรภายนอก การแยกประจุโดยการเหนี่ยวนำของแสงในที่สุดก็จะสร้างกระแส ISH (ที่เรียกว่ากระแสไปข้างหน้า) ไหลผ่านรอยต่อของเซลล์ไปในทิศทางตรงข้ามกับที่แสงกำลังขับกระแส นอกจากนี้แรงดันไฟฟ้าเหนี่ยวนำมีแนวโน้มที่จะให้ไบแอสไปข้างหน้า (แม่แบบ:Langx) กับรอยต่อ ในระดับที่สูงพอ ไบแอสไปข้างหน้านี้จะทำให้เกิดกระแสไปข้างหน้า ID ขึ้นในไดโอดตรงข้ามกับกระแสไปข้างหน้าที่เกิดจากแสง ผลที่ตามมา กระแสที่ยิ่งใหญ่ที่สุดจะเกิดภายใต้สภาวะการลัดวงจร และแสดงด้วยสัญลักษณ์ IL (สำหรับกระแสที่เกิดขึ้นจากแสง) ในวงจรเทียบเท่า[46] โดยประมาณ กระแสที่เหมือนกันนี้จะเกิดขึ้นเมื่อแรงดันไฟฟ้าไปข้างหน้ามีค่าสูงถึงจุดที่ไดโอดจะกลายเป็นตัวนำกระแส

กระแสที่ได้จากไดโอดเมื่อกระทบกับแสงแล้วจัดส่งให้กับวงจรภายนอกจะมีค่าเป็น:

I=ILI0(eqV/(mkT)1) 

เมื่อ I0 เป็นกระแสอิ่มตัวย้อนกลับ เมื่อสองพารามิเตอร์ที่ขึ้นอยู่กับโครงสร้างของเซลล์แสงอาทิตย์และขึ้นอยู่ในระดับหนึ่งกับตัวแรงดันไฟฟ้าเองมีค่าเป็น m หรือปัจจัย ideality และ kT/q เป็นแรงดันความร้อน (ประมาณ 0.026 V ที่อุณหภูมิห้อง)[46] ความสัมพันธ์นี้จะถูกวาดลงบนแผ่นกราฟในภาพโดยใช้ค่าคงที่ m = 2[47] ภายใต้สภาวะวงจรเปิด (นั่นคือ I = 0), แรงดันไฟฟ้าวงจรเปิดจะเป็นแรงดันไฟฟ้าที่ไบแอสไปข้างหน้าของรอยต่อมีค่าพอเพียงที่จะทำให้กระแสไปข้างหน้าทำการสมดุลกับกระแสภาพได้อย่างสมบูรณ์ การแก้สมการข้างต้นสำหรับแรงดันไฟฟ้า V และการกำหนดให้มันเป็นแรงดันไฟฟ้าวงจรเปิดของสมการ I–V จะเป็น:

Voc=m kTq ln(ILI0+1) 

ซึ่งจะเป็นประโยชน์ในการบ่งชี้การพึ่งพาอาศัยแบบลอการิทึม Voc ต่อกระแสที่สร้างขึ้นจากแสง โดยปกติแรงดันไฟฟ้าวงจรเปิดจะมีค่าไม่เกินประมาณ 0.5 โวลต์ 0.5 V[48]

เมื่อกำลังจ่ายพลังงานให้กับโหลด แรงดันภาพอาจแปรเปลี่ยนได้ ตามที่แสดงในภาพประกอบ สำหรับโหลดที่มีความต้านทาน RL เซลล์จะพัฒนาแรงดันไฟฟ้าที่จะอยู่ระหว่างค่าลัดวงจร V = 0, ทำให้ I = IL และค่าวงจรเปิด Voc, ทำให้ I = 0 ดังนั้นค่าที่กำหนดโดยกฎของโอห์มคือ V = I RL เมื่อกระแส I เป็นความแตกต่างระหว่างกระแสลัดวงจรกับกระแสเนื่องจากไบแอสไปข้างหน้าของรอยต่อ ตามที่ระบุไว้โดยวงจรสมมูล (ไม่นำความต้านทานปรสิตมาคิด)[44]

ซึ่งตรงข้ามกับแบตเตอรี่ ที่ระดับกระแแสที่ส่งไปยังวงจรภายนอกใกล้ IL, เซลล์แสงอาทิตย์ทำหน้าที่เหมือน แหล่งจ่ายกระแส มากกว่า แหล่งจ่ายแรงดัน (ใกล้ส่วนแนวตั้งของเส้นโค้งสองเส้นที่แสดงเป็นภาพประกอบ)[44] กระแสที่ถูกดึงไปใช้เกือบจะคงที่ในช่วงพิสัยหนึ่งของแรงดันโหลด จนถึงหนึ่งอิเล็กตรอนต่อโฟตอนที่ถูกแปลง ประสิทธิภาพควอนตัมหรือความน่าจะเป็นของการได้รับอิเล็กตรอนของกระแสภาพต่อโฟตอนที่ตกกระทบ ขึ้นอยุ่ไม่เพียงแต่กับตัวเซลล์แสงอาทิตย์เองเท่านั้น แต่ยังขึ้นอยู่กับสเปกตรัมของแสงอีกด้วย

ไดโอดมีคุณสมบัติ "ศักย์ในตัว" (แม่แบบ:Langx) อันเกิดขึ้นเองเนื่องจากความต่างศักย์ที่หน้าสัมผัสระหว่างวัสดุสองชนิดที่แตกต่างบนด้านใดด้านหนึ่งของรอยต่อ ศักย์ในตัวนี้จะเกิดขึ้นตั้งแต่เมื่อรอยต่อถูกผลิตขึ้นและแรงดันไฟฟ้านั้นเป็นผลพลอยได้จากความสมดุลทางอุณหพลศาสตร์ภายในเซลล์ เมื่อเกิดขึ้นมาแล้ว อย่างไรก็ตามความต่างศักย์นี้ก็ยังไม่สามารถขับเคลื่อนกระแสได้เนื่องจากการเชื่อมต่อโหลดไม่ได้มีผลกระทบกับความสมดุลนี้แม่แบบ:Clarify ในทางตรงกันข้ามการสะสมของอิเล็กตรอนส่วนเกินในหนึ่งภูมิภาคและโฮลส่วนเกินในอีกหนึ่งภูมิภาคอันเนื่องจากกระทบกับแสง ส่งผลให้เกิดแรงดันภาพที่ขับเคลื่อนกระแสได้จริงเมื่อมีโหลดมาเชื่อมต่อกับไดโอดที่เรืองแสงนั้น ตามที่ระบุไว้ข้างต้น แรงดันภาพนี้ยังให้ไบแอสไปข้างหน้ากับรอยต่ออีกด้วย และเป็นการช่วย ลด สนามที่มีอยู่ก่อนในภูมิภาคพร่องพาหะ (แม่แบบ:Langx)

ดูเพิ่ม

อ้างอิง

แม่แบบ:รายการอ้างอิง

  1. emf. (1992). American Heritage Dictionary of the English Language 3rd ed. Boston:Houghton Mifflin.
  2. แม่แบบ:Cite journal
  3. แม่แบบ:Cite book
  4. แม่แบบ:Cite book
  5. 5.0 5.1 แม่แบบ:Cite book
  6. แม่แบบ:Cite book
  7. แม่แบบ:Cite book
  8. แม่แบบ:Cite book
  9. แม่แบบ:Cite book
  10. Florian Cajori (1899). A History of Physics in Its Elementary Branches: Including the Evolution of Physical Laboratories. The Macmillan Company. pp. 218–219.
  11. แม่แบบ:Cite book
  12. แม่แบบ:Cite book
  13. สนามไฟฟ้าเนื่องจากการแยกประจุที่เกิดขึ้นโดยแรงเคลื่อนไฟฟ้าเท่านั้นที่นำมาคิด ในเซลล์แสงอาทิตย์เป็นตัวอย่าง การปรากฏของสนามไฟฟ้าจะสัมพันธ์กับศักย์ไฟฟ้าที่จุดสัมผัสที่เป็นผลมาจากการสมดุลทางอุณหพลศาสตร์ (จะพูดถึงภายหลัง) และส่วนประกอบสนามไฟฟ้านี้ไม่ถูกนับรวมอยู่ในอินทีกรัล แต่สนามไฟฟ้าที่เกิดเนื่องจากบางส่วนของการแยกประจุเท่านั้นที่ทำให้เกิดแรงดันแสงจะถูกนับรวมแทน
  14. แม่แบบ:Cite book
  15. แม่แบบ:Cite book
  16. Colin B P Finn (1992). Thermal Physics. CRC Press. p. 163. ISBN 0-7487-4379-0.
  17. Colin B P Finn (1992). Thermal Physics. CRC Press. p. 163. ISBN 0-7487-4379-0.
  18. แม่แบบ:Cite book
  19. 19.0 19.1 แม่แบบ:Cite book
  20. แม่แบบ:Cite book
  21. แม่แบบ:Cite book
  22. แม่แบบ:Cite book
  23. แม่แบบ:Cite book
  24. John S. Rigden, (editor in chief), Macmillan encyclopedia of physics. New York : Macmillan, 1996.
  25. แม่แบบ:Cite book
  26. แม่แบบ:Cite book
  27. แม่แบบ:Cite book
  28. แม่แบบ:Cite book
  29. The brave reader can find an extensive discussion for organic electrochemistry in แม่แบบ:Cite book
  30. แนวคิดของ electronegativity ได้ถูกขยายออกไปเพื่อรวมถึงหลักการของ electronegativity equalization ซึ่งหมายถึงว่าเมื่อโมเลกุลมากกว่าหนึ่งตัวถูกนำมาอยู่ใกล้กัน อิเล็กตรอนจะวางตัวใหม่เพื่อให้เกิดความสมดุลนั่นคือจะไม่มีแรงสุทธิบนตัวพวกมัน ดูตัวอย่างใน แม่แบบ:Cite book
  31. BE Conway (1999). "Energy factors in relation to electrode potential". Electrochemical supercapacitors. Springer. p. 37. ISBN 0-306-45736-9
  32. R. J. D. Tilley (2004). Understanding Solids. Wiley. p. 267. ISBN 0-470-85275-5.
  33. Colin B P Finn (1992). Thermal Physics. CRC Press. p. 163. ISBN 0-7487-4379-0.
  34. แม่แบบ:Cite book
  35. แม่แบบ:Cite journal
  36. แม่แบบ:Cite book
  37. แม่แบบ:Cite book
  38. แม่แบบ:Cite book
  39. แม่แบบ:Cite book
  40. แม่แบบ:Cite book
  41. แม่แบบ:Cite book
  42. แม่แบบ:Cite book
  43. แม่แบบ:Cite book
  44. 44.0 44.1 44.2 แม่แบบ:Cite book
  45. แม่แบบ:Cite book
  46. 46.0 46.1 แม่แบบ:Cite book
  47. In practice, at low voltages m → 2, whereas at high voltages m → 1. See Araújo, op. cit. ISBN 84-86505-55-0. page 72
  48. แม่แบบ:Cite book